skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Singh, Atika"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Zhou, Jianhong; Osten, Wolfgang; Nikolaev, Dmitry P. (Ed.)
    Despite recent advances in deep learning, object detection and tracking still require considerable manual and computational effort. First, we need to collect and create a database of hundreds or thousands of images of the target objects. Next we must annotate or curate the images to indicate the presence and position of the target objects within those images. Finally, we must train a CNN (convolution neural network) model to detect and locate the target objects in new images. This training is usually computationally intensive, consists of thousands of epochs, and can take tens of hours for each target object. Even after the model training in completed, there is still a chance of failure if the real-time tracking and object detection phases lack sufficient accuracy, precision, and/or speed for many important applications. Here we present a system and approach which minimizes the computational expense of the various steps in the training and real-time tracking process outlined above of for applications in the development of mixed-reality science laboratory experiences by using non-intrusive object-encoding 2D QR codes that are mounted directly onto the surfaces of the lab tools to be tracked. This system can start detecting and tracking it immediately and eliminates the laborious process of acquiring and annotating a new training dataset for every new lab tool to be tracked. 
    more » « less