skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Singleton, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract CeOs4Sb12, a member of the skutterudite family, has an unusual semimetallic low-temperature L -phase that inhabits a wedge-like area of the fieldH—temperatureTphase diagram. We have conducted measurements of electrical transport and megahertz conductivity on CeOs4Sb12single crystals under pressures of up to 3 GPa and in high magnetic fields of up to 41 T to investigate the influence of pressure on the differentH–Tphase boundaries. While the high-temperature valence transition between the metallic H -phase and the L -phase is shifted to higherTby pressures of the order of 1 GPa, we observed only a marginal suppression of the S -phase that is found below 1 K for pressures of up to 1.91 GPa. High-field quantum oscillations have been observed for pressures up to 3.0 GPa and the Fermi surface of the high-field side of the H -phase is found to show a surprising decrease in size with increasing pressure, implying a change in electronic structure rather than a mere contraction of lattice parameters. We evaluate the field-dependence of the effective masses for different pressures and also reflect on the sample dependence of some of the properties of CeOs4Sb12which appears to be limited to the low-field region. 
    more » « less
  3. Using time-domain terahertz spectroscopy in pulsed magnetic fields up to 31 T, we measure the terahertz optical conductivity in an optimally doped thin film of the high-temperature superconducting cuprate La1.84⁢Sr0.16⁢CuO4. We observe systematic changes in the circularly polarized complex optical conductivity that are consistent with cyclotron absorption of 𝑝-type charge carriers characterized by a cyclotron mass of 4.9⁢𝑚e±0.8⁢𝑚e and a scattering rate that increases with magnetic field. These results open the door to studies aimed at characterizing the degree to which electron-electron interactions influence carrier masses in cuprate superconductors. 
    more » « less
  4. Abstract Although low-dimensionalS = 1 antiferromagnets remain of great interest, difficulty in obtaining high-quality single crystals of the newest materials hinders experimental research in this area. Polycrystalline samples are more readily produced, but there are inherent problems in extracting the magnetic properties of anisotropic systems from powder data. Following a discussion of the effect of powder-averaging on various measurement techniques, we present a methodology to overcome this issue using thermodynamic measurements. In particular we focus on whether it is possible to characterise the magnetic properties of polycrystalline, anisotropic samples using readily available laboratory equipment. We test the efficacy of our method using the magnets [Ni(H2O)2(3,5-lutidine)4](BF4)2and Ni(H2O)2(acetate)2(4-picoline)2, which have negligible exchange interactions, as well as the antiferromagnet [Ni(H2O)2(pyrazine)2](BF4)2, and show that we are able to extract the anisotropy parameters in each case. The results obtained from the thermodynamic measurements are checked against electron-spin resonance and neutron diffraction. We also present a density functional method, which incorporates spin–orbit coupling to estimate the size of the anisotropy in [Ni(H2O)2(pyrazine)2](BF4)2
    more » « less
  5. Abstract An extensive system of NW striking faults constitutes a major tectonic feature of the Coastal Cordillera in northern Chile, but fundamental questions remain about timing and kinematics of these structures. We present new geologic mapping and geochronology that provide insight into the structural evolution and tectonic significance of the Taltal fault system (TFS). The TFS displaces the Early Cretaceous arc‐parallel Atacama fault system (AFS) with ~10.6 km cumulative offset across a ~15 km wide zone. Brittle fault data demonstrate that the TFS is vertical to steeply NE dipping with an average sinistral slip vector plunging 11° from the NW, compatible with E‐W shortening. Two late Early Cretaceous dikes cut the AFS but are cut by TFS faults, and synkinematic calcite on a TFS strand yielded a U‐Pb calcite date of 114.1 ± 7.0 Ma. These data demonstrate that the AFS was abandoned and deformation (re) initiated on the TFS between ~114–107 Ma, with continued slip after intrusion of the Tropezón (~110 Ma) and Librillo (106–101 Ma) plutonic complexes. Emplacement of a ~146 Ma rhyolite dike along the main Taltal fault and 141 ± 11 Ma calcite mineralization in the fault core suggests that a precursor structure influenced magma emplacement and fluid flow in the Late Jurassic/Early Cretaceous, supporting the hypothesis that the TFS reactivated long‐lived inherited crustal weaknesses. The Early Cretaceous shift from arc‐parallel shear to slip on the TFS and E‐W shortening shortly preceded migration of the magmatic arc and records a change in the Chilean margin subduction dynamics. 
    more » « less