skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Sinsabaugh, Robert L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Drylands are often characterized by a pulse dynamics framework in which episodic rain events trigger brief pulses of biological activity and resource availability that regulate primary production. In the northern Chihuahuan Desert, growing season precipitation typically comes from monsoon rainstorms that stimulate soil microbial processes like decomposition, releasing inorganic nitrogen needed by plant processes. Compared to microbes, plants require greater amounts of soil moisture, typically from larger monsoon storms predicted to become less frequent and more intense in the future. Yet field‐based studies linking rainfall pulses with soil nutrient dynamics are rare. Consequently, little is known about how changes in rainfall patterns may affect plant available nitrogen in dryland soils, particularly across temporal scales. We measured daily and seasonal responses of soil inorganic nitrogen and related parameters to experimentally applied small frequent and large infrequent rain events throughout a summer growing season in a Chihuahuan Desert grassland. Contrary to long‐standing theories around resource pulse dynamics in drylands, nitrogen availability did not pulse following experimental rain events. Moreover, large infrequent events resulted in significantly less plant available nitrogen despite causing distinct pulses of increased soil moisture availability that persisted for several days. Overall, nitrogen availability increased over the growing season, especially following small frequent rain events that also stimulated some microbial ecoenzymatic activities. Our results suggest that projected changes in climate to fewer, larger rain events could significantly impact primary production in desert grasslands by decreasing plant available nitrogen when soil moisture is least limiting to plant growth.

    more » « less
  2. Wardle, David (Ed.)
  3. Abstract

    Species interactions may couple the resource dynamics of different primary producers and may enhance productivity by reducing loss from the system. In low‐resource systems, this biotic control may be especially important for maintaining productivity. In drylands, the activities of vascular plants and biological soil crusts can be decoupled in space because biocrusts grow on the soil surface but plant roots are underground, and decoupled in time due to biocrusts activating with smaller precipitation events than plants. Soil fungi are hypothesized to functionally couple the plants and biocrusts by transporting nutrients. We studied whether disrupting fungi between biocrusts and plants reduces nitrogen transfer and retention and decreases primary production as predicted by the fungal loop hypothesis. Additionally, we compared varying precipitation regimes that can drive different timing and depth of biological activities.

    We used field mesocosms in which the potential for fungal connections between biocrusts and roots remained intact or were impeded by mesh. We imposed a precipitation regime of small, frequent or large, infrequent rain events. We used15N to track fungal‐mediated nitrogen (N) transfer. We quantified microbial carbon use efficiency and plant and biocrust production and N content.

    Fungal connections with biocrusts benefitted plant biomass and nutrient retention under favourable (large, infrequent) precipitation regimes but not under stressful (small, frequent) regimes, demonstrating context dependency in the fungal loop. Translocation of a15N tracer from biocrusts to roots was marginally lower when fungal connections were impeded than intact. Under large, infrequent rains, when fungal connections were intact, the C:N of leaves converged towards the C:N of biocrusts, suggesting higher N retention in the plant, and plant above‐ground biomass was greater relative to the fungal connections‐impeded treatment. Carbon use efficiency in both biocrust and rooting zone soil was less C‐limited when connections were intact than impeded, again only in the large, infrequent precipitation regime.

    Synthesis. Although we did not find evidence of a reciprocal transfer of C and N between plants and biocrusts, plant production was benefited by fungal connections with biocrusts under favourable conditions.

    more » « less