skip to main content

Search for: All records

Creators/Authors contains: "Sitaraman, Ramesh K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 4, 2025
  2. Free, publicly-accessible full text available September 1, 2024
  3. The ever-increasing demand for energy is resulting in considerable carbon emissions from the electricity grid. In recent years, there has been growing attention on demand-side optimizations to reduce carbon emissions from electricity usage. A vital component of these optimizations is short-term forecasting of the carbon intensity of the grid-supplied electricity. Many recent forecasting techniques focus on day-ahead forecasts, but obtaining such forecasts for longer periods, such as multiple days, while useful, has not gotten much attention. In this paper, we present CarbonCast, a machine-learning-based hierarchical approach that provides multi-day forecasts of the grid's carbon intensity. CarbonCast uses neural networks to first generate production forecasts for all the electricity-generating sources. It then uses a hybrid CNN-LSTM approach to combine these first-tier forecasts with historical carbon intensity data and weather forecasts to generate a carbon intensity forecast for up to four days. Our results show that such a hierarchical design improves the robustness of the predictions against the uncertainty associated with a longer multi-day forecasting period. We analyze which factors most influence the carbon intensity forecasts of any region with a specific mixture of electricity-generating sources and also show that accurate source production forecasts are vital in obtaining precise carbon intensity forecasts. CarbonCast's 4-day forecasts have a MAPE of 3.42--19.95% across 13 geographically distributed regions while outperforming state-of-the-art methods. Importantly, CarbonCast is the first open-sourced tool for multi-day carbon intensity forecasts where the code and data are freely available to the research community. 
    more » « less
  4. A similarity cache can reply to a query for an object with similar objects stored locally. In some applications of similarity caches, queries and objects are naturally repre- sented as points in a continuous space. This is for example the case of 360◦ videos where user’s head orientation—expressed in spherical coordinates—determines what part of the video needs to be retrieved, or of recommendation systems where a metric learning technique is used to embed the objects in a finite dimensional space with an opportune distance to capture content dissimilarity. Existing similarity caching policies are simple modifications of classic policies like LRU, LFU, and qLRU and ignore the continuous nature of the space where objects are embedded. In this paper, we propose GRADES, a new similarity caching policy that uses gradient descent to navigate the continuous space and find appropriate objects to store in the cache. We provide theoretical convergence guarantees and show GRADES increases the similarity of the objects served by the cache in both applications mentioned above. 
    more » « less
  5. In this work, we study the online multidimensional knapsack problem (called OMdKP) in which there is a knapsack whose capacity is represented in m dimensions, each dimension could have a different capacity. Then, n items with different scalar profit values and m-dimensional weights arrive in an online manner and the goal is to admit or decline items upon their arrival such that the total profit obtained by admitted items is maximized and the capacity of knapsack across all dimensions is respected. This is a natural generalization of the classic single-dimension knapsack problem with several relevant applications such as in virtual machine allocation, job scheduling, and all-or-nothing flow maximization over a graph. We develop an online algorithm for OMdKP that uses an exponential reservation function to make online admission decisions. Our competitive analysis shows that the proposed online algorithm achieves the competitive ratio of O(log (Θ α)), where α is the ratio between the aggregate knapsack capacity and the minimum capacity over a single dimension and θ is the ratio between the maximum and minimum item unit values. We also show that the competitive ratio of our algorithm with exponential reservation function matches the lower bound up to a constant factor. 
    more » « less