skip to main content

Search for: All records

Creators/Authors contains: "Sivarathri, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Scientists in disciplines such as neuroscience and bioinformatics are increasingly relying on science gateways for experimentation on voluminous data, as well as analysis and visualization in multiple perspectives. Though current science gateways provide easy access to computing resources, datasets and tools specific to the disciplines, scientists often use slow and tedious manual efforts to perform knowledge discovery to accomplish their research/education tasks. Recommender systems can provide expert guidance and can help them to navigate and discover relevant publications, tools, data sets, or even automate cloud resource configurations suitable for a given scientific task. To realize the potential of integration ofmore »recommenders in science gateways in order to spur research productivity,we present a novel “OnTimeRecommend" recommender system. The OnTimeRecommend comprises of several integrated recommender modules implemented as microservices that can be augmented to a science gateway in the form of a recommender-as-a-service. The guidance for use of the recommender modules in a science gateway is aided by a chatbot plug-in viz., Vidura Advisor. To validate our OnTimeRecommend, we integrate and show benefits for both novice and expert users in domain-specific knowledge discovery within two exemplar science gateways, one in neuroscience (CyNeuro) and the other in bioinformatics (KBCommons).« less
  2. Neuroscientists are increasingly relying on high performance/throughput computing resources for experimentation on voluminous data, analysis and visualization at multiple neural levels. Though current science gateways provide access to computing resources, datasets and tools specific to the disciplines, neuroscientists require guided knowledge discovery at various levels to accomplish their research/education tasks. The guidance can help them to navigate them through relevant publications, tools, topic associations and cloud platform options as they accomplish important research and education activities. To address this need and to spur research productivity and rapid learning platform development, we present “OnTimeRecommend”, a novel recommender system that comprises ofmore »several integrated recommender modules through RESTful web services. We detail a neuroscience use case in a CyNeuro science gateway, and show how the OnTimeRecommend design can enable novice/expert user interfaces, as well as template-driven control of heterogeneous cloud resources.« less
  3. Neuro-scientists are increasingly relying on parallel and distributed computing resources for analysis and visualization of their neuron simulations. Although science gateways have democratized relevant high performance/throughput resources, users require expert knowledge about programming and infras-tructure configuration that is beyond the repertoire of most neuroscience programs. These factors become deterrents for the successful adoption and the ultimate diffusion (i.e., systemic spread) of science gateways in the neuroscience community. In this paper, we present a novel intuitionistic fuzzy logic based conversational recommender that can provide guidance to users when using science gateways for research and education workflows. The users interact with amore »context-aware chatbot that is embedded within custom web-portals to obtain simulation tools/resources to accomplish their goals. In order to ensure user goals are met, the chatbot profiles a user’s cyberinfrastructure and neuroscience domain proficiency level using a ‘usability quadrant’ approach. Simulation of user queries for an exemplary neuroscience use case demonstrates that our chatbot can provide step-by-step navigational support and generate distinct responses based on user proficiency.« less
  4. Neuro-scientists are increasingly relying on parallel and distributed computing resources for analysis and visualization of their neuron simulations. Although science gateways have democratized relevant high performance/throughput resources, users require expert knowledge about programming and infrastructure configuration that is beyond the repertoire of most neuroscience programs. These factors become deterrents for the successful adoption and the ultimate diffusion (i.e., systemic spread) of science gateways in the neuroscience community. In this paper, we present a novel intuitionistic fuzzy logic based conversational recommender that can provide guidance to users when using science gateways for research and education workflows. The users interact with amore »context-aware chatbot that is embedded within custom web-portals to obtain simulation tools/resources to accomplish their goals. In order to ensure user goals are met, the chatbot profiles a user’s cyberinfrastructure and neuroscience domain proficiency level using a ‘usability quadrant’ approach. Simulation of user queries for an exemplary neuroscience use case demonstrates that our chatbot can provide step-by-step navigational support and generate distinct responses based on user proficiency.« less