skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Skamarock, William_C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Global Storm Resolving Models (GSRMs) provide a way to understand weather and climate events across scales for better‐informed climate impacts. In this work, we apply the recently developed and validated CAM (Community Atmosphere Model)—MPAS (Model for Prediction Across Scales) modeling framework, based on the open‐source Community Earth System Model (CESM2), to examine the tropical convection features at the storm resolving scale over the Maritime Continent region at 3 km horizontal spacing. We target two global numerical experiments during the winter season of 2018 for comparison with observation in the region. We focus on the investigation of the representations of the convective systems, precipitation statistics, and tropical cyclone behaviors. We found that regional‐refined experiments show more accurate precipitation distributions, diurnal cycles, and better agreement with observations for tropical cyclone features in terms of intensity and strength statistics. We expect the exploration of this work will further advance the development and use of the storm‐resolving model in precipitation predictions across scales. 
    more » « less