- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Skarbek, Rob_M (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
& Babbitt, W. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
SUMMARY This paper examines the linear stability of sliding on faults embedded in a 2-D elastic medium that obey rate and state friction and have a finite length and/or are near a traction-free surface. Results are obtained using a numerical technique that allows for analysis of systems with geometrical complexity and heterogeneous material properties; however only systems with homogeneous frictional and material properties are examined. Some analytical results are also obtained for the special case of a fault that is parallel to a traction-free surface. For velocity-weakening faults with finite length, there is a critical fault length $$L^{*}$$ for unstable sliding that is analogous to the critical wavelength $$h^{*}$$ that is usually derived from infinite fault systems. Faults longer than $$L^{*}$$ are linearly unstable to perturbations of any length. On vertical strike-slip faults or faults in a full-space $$L^{*} \approx h^{*}/e$$, where e is Euler’s number. For dip-slip faults near a traction-free surface $$L^{*} \le h^{*}/e$$ and is a function of dip angle $$\beta$$, burial depth d of the fault’s up-dip edge and friction coefficient. In particular, $$L^{*}$$ is at least an order of magnitude smaller than $$h^{*}$$ on shallowly dipping ($$\beta < 10^\circ$$) faults that intersect the traction-free surface. Additionally, $$L^{*} \approx h^{*}/e$$ on dip-slip faults with burial depths $$d \ge h^{*}$$. For sliding systems that can be treated as a thin layer, such as landslides, glaciers or ice streams, $$L^{*} = h^{*}/2$$. Finally, conditions are established for unstable sliding on infinitely-long, velocity-strengthening faults that are parallel to a traction-free surface.more » « less
An official website of the United States government
