skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Skemer, Philip"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. SUMMARY The occurrence of plate tectonics on Earth is rooted in the physics of lithospheric ductile weakening and shear-localization. The pervasiveness of mylonites at lithospheric shear zones is a key piece of evidence that localization correlates with reduction in mineral grain size. Most lithospheric mylonites are polymineralic and the interaction between mineral phases, such as olivine and pyroxene, especially through Zener pinning, impedes normal grain growth while possibly enhancing grain damage, both of which facilitate grain size reduction and weakening, as evident in lab experiments and field observations. The efficacy of pinning, however, relies on the mineral phases being mixed and dispersed at the grain scale, where well-mixed states lead to greater mylonitization. To model grain mixing between different phases at the continuum scale, we previously developed a theory treating grain-scale processes as diffusion between phases, but driven by imposed compressive stresses acting on the boundary between phases. Here we present a new model for shearing rock that combines our theory for diffusive grain mixing, 2-D non-Newtonian flow and two-phase grain damage. The model geometry is designed specifically for comparison to torsional shear-deformation experiments. Deformation is either forced by constant velocity or constant stress boundary conditions. As the layer is deformed, mixing zones between different mineralogical units undergo enhanced grain size reduction and weakening, especially at high strains. For constant velocity boundary experiments, stress drops towards an initial piezometric plateau by a strain of around 4; this is also typical of monophase experiments for which this initial plateau is the final steady state stress. However, polyphase experiments can undergo a second large stress drop at strains of 10–20, and which is associated with enhanced phase mixing and resultant grain size reduction and weakening. Model calculations for polyphase media with grain mixing and damage capture the experimental behaviour when damage to the interface between phases is moderately slower or less efficient than damage to the grain boundaries. Other factors such as distribution and bulk fraction of the secondary phase, as well as grain-mixing diffusivity also influence the timing of the second stress drop. For constant stress boundary conditions, the strain rate increases during weakening and localization. For a monophase medium, there is theoretically one increase in strain rate to a piezometric steady state. But for the polyphase model, the strain rate undergoes a second abrupt increase, the timing for which is again controlled by interface damage and grain mixing. The evolution of heterogeneity through mixing and deformation, and that of grain size distributions also compare well to experimental observations. In total, the comparison of theory to deformation experiments provides a framework for guiding future experiments, scaling microstructural physics to geodynamic applications and demonstrates the importance of grain mixing and damage for the formation of plate tectonic boundaries. 
    more » « less
  2. Abstract

    Quartz is an abundant mineral in Earth's crust whose mechanical behavior plays a significant role in the deformation of the continental lithosphere. However, the viscoplastic rheology of quartz is difficult to measure experimentally at low temperatures without high confining pressures due to the tendency of quartz (and other geologic materials) to fracture under these conditions. Instrumented nanoindentation experiments inhibit cracking even at ambient conditions, by imposing locally high mean stress, allowing for the measurement of the viscoplastic rheology of hard materials over a wide range of temperatures. Here we measure the indentation hardness of four synthetic quartz specimens and one natural quartz specimen with varying water contents over a temperature range of 23°C to 500°C. Yield stress, which is calculated from hardness but is model dependent, is fit to a constitutive flow law for low‐temperature plasticity to estimate the athermal Peierls stress of quartz. Below 500°C, the yield stresses presented here are lower than those obtained by extrapolating a flow law constrained by experiments at higher temperatures irrespective of the applied model. Indentation hardness and yield stress depend weakly on crystallographic orientation but show no dependence on water content.

    more » « less
  3. Abstract

    Antigorite is a hydrous sheet silicate with strongly anisotropic seismic and rheological properties. Hydrous minerals such as antigorite have been invoked to explain numerous geologic observations within subduction zones including intermediate‐depth earthquakes, arc volcanism, the persistent weakness of the subduction interface, trench‐parallelSwave splitting, and episodic tremor and slip. To understand how the presence of antigorite‐bearing rocks affects observations of seismic anisotropy, three mylonites from the Kohistan palaeo‐island arc in Pakistan were analysed using electron backscatter diffraction. A fourth sample, which displayed optical evidence for crystallographically controlled replacements of olivine, was also investigated using electron backscatter diffraction to identify potential topotactic relationships. The resulting data were used to model the bulk seismic properties of antigorite‐rich rocks. The mylonitic samples exhibit incredibly strong bulk anisotropy (10–20% for the antigorite + olivine). Within the nominally undeformed protomylonite, two topotactic relationships were observed: (1) (010)ant//(100)ol with [100]ant//[001]ol and (2) (010)ant//(100)ol with [100]ant//[010]ol. However, the strength of a texture formed by topotactic replacement is markedly weaker than the strength of the textures observed in mylonitic samples. Since antigorite is thought to be rheologically weak, we hypothesise that microstructures formed from topotactic reactions will be progressively overprinted as deformation is localised in regions with greater percentages of serpentine. Regions of highly sheared serpentine, therefore, have the potential to strongly influence seismic wave speeds in subduction settings. The presence of deformed antigorite in a dipping structure is one explanation for observations of both the magnitude and splitting pattern of seismic waves in subduction zones.

    more » « less
  4. Abstract

    Ultramylonites—intensely deformed rocks with fine grain sizes and well‐mixed mineral phases—are thought to be a key component of Earth‐like plate tectonics, because coupled phase mixing and grain boundary pinning enable rocks to deform by grain‐size‐sensitive, self‐softening creep mechanisms over long geologic timescales. In isoviscous two‐phase composites, “geometric” phase mixing occurs via the sequential formation, attenuation (stretching), and disaggregation of compositional layering. However, the effects of viscosity contrast on the mechanisms and timescales for geometric mixing are poorly understood. Here, we describe a series of high‐strain torsion experiments on nonisoviscous calcite‐fluorite composites (viscosity contrast,ηca/ηfl≈ 200) at 500°C, 0.75 GPa confining pressure, and 10−6–10−4 s−1shear strain rate. At low to intermediate shear strains (γ ≤ 10), polycrystalline domains of the individual phases become sheared and form compositional layering. As layering develops, strain localizes into the weaker phase, fluorite. Strain partitioning impedes mixing by reducing the rate at which the stronger (calcite) layers deform, attenuate, and disaggregate. Even at very large shear strains (γ ≥ 50), grain‐scale mixing is limited, and thick compositional layers are preserved. Our experiments (1) demonstrate that viscosity contrasts impede mechanical phase mixing and (2) highlight the relative inefficiency of mechanical mixing. Nevertheless, by employing laboratory flow laws, we show that “ideal” conditions for mechanical phase mixing may be found in the wet middle to lower continental crust and in the dry mantle lithosphere, where quartz‐feldspar and olivine‐pyroxene viscosity contrasts are minimized, respectively.

    more » « less
  5. Abstract

    Experimentally quantifying the viscoplastic rheology of olivine at the high stresses and low temperatures of the shallow lithosphere is challenging due to olivine's propensity to deform by brittle mechanisms at these conditions. In this study, we use microscale uniaxial compression tests to investigate the rheology of an olivine single crystal at room pressure and temperature. Pillars with nominal diameters of 1.25 μm were prepared using a focused ion beam milling technique and were subjected to sustained axial stresses of several gigapascal. The majority of the pillars failed after dwell times ranging from several seconds to a few hours. However, several pillars exhibited clear evidence of plastic deformation without failure after 4–8 hr under load. The corresponding creep strain rates are estimated to be on the order of 10−6to 10−7 s−1. The uniaxial stresses required to achieve this deformation (4.1–4.4 GPa) are in excellent agreement with complementary data obtained using nanoindentation techniques. Scanning transmission electron microscopy observations indicate that deformation occurred along amorphous shear bands within the deformed pillars. Electron energy loss spectroscopy measurements revealed that the bands are enriched in Fe and depleted in Mg. We propose that inhomogeneities in the cation distribution in olivine concentrate stress and promote the amorphization of the Fe‐rich regions. The time dependence of catastrophic failure events suggests that the amorphous bands must grow to some critical length scale to generate an unstable defect, such as a shear crack.

    more » « less

    Low-temperature plastic rheology of calcite plays a significant role in the dynamics of Earth's crust. However, it is technically challenging to study plastic rheology at low temperatures because of the high confining pressures required to inhibit fracturing. Micromechanical tests, such as nanoindentation and micropillar compression, can provide insight into plastic rheology under these conditions because, due to the small scale, plastic deformation can be achieved at low temperatures without the need for secondary confinement. In this study, nanoindentation and micropillar compression experiments were performed on oriented grains within a polycrystalline sample of Carrara marble at temperatures ranging from 23 to 175 °C, using a nanoindenter. Indentation hardness is acquired directly from nanoindentation experiments. These data are then used to calculate yield stress as a function of temperature using numerical approaches that model the stress state under the indenter. Indentation data are complemented by uniaxial micropillar compression experiments. Cylindrical micropillars ∼1 and ∼3 μm in diameter were fabricated using a focused ion beam-based micromachining technique. Yield stress in micropillar experiments is determined directly from the applied load and micropillar dimensions. Mechanical data are fit to constitutive flow laws for low-temperature plasticity and compared to extrapolations of similar flow laws from high-temperature experiments. This study also considered the effects of crystallographic orientation on yield stress in calcite. Although there is a clear orientation dependence to plastic yielding, this effect is relatively small in comparison to the influence of temperature.

    more » « less