Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Political and social scientists monitor, analyze and predict political unrest and violence, preventing (or mitigating) harm, and promoting the management of global conflict. They do so using event coder systems, which extract structured representations from news articles to design forecast models and event-driven continuous monitoring systems. Existing methods rely on expensive manual annotated dictionaries and do not support multilingual settings. To advance the global conflict management, we propose a novel model, Multi-CoPED (Multilingual Multi-Task Learning BERT for Coding Political Event Data), by exploiting multi-task learning and state-of-the-art language models for coding multilingual political events. This eliminates the need for expensive dictionaries by leveraging BERT models' contextual knowledge through transfer learning. The multilingual experiments demonstrate the superiority of Multi-CoPED over existing event coders, improving the absolute macro-averaged F1-scores by 23.3% and 30.7% for coding events in English and Spanish corpus, respectively. We believe that such expressive performance improvements can help to reduce harms to people at risk of violence.more » « less
-
Analyzing conflicts and political violence around the world is a persistent challenge in the political science and policy communities due in large part to the vast volumes of specialized text needed to monitor conflict and violence on a global scale. To help advance research in political science, we introduce ConfliBERT, a domain-specific pre-trained language model for conflict and political violence. We first gather a large domain-specific text corpus for language modeling from various sources. We then build ConfliBERT using two approaches: pre-training from scratch and continual pre-training. To evaluate ConfliBERT, we collect 12 datasets and implement 18 tasks to assess the models’ practical application in conflict research. Finally, we evaluate several versions of ConfliBERT in multiple experiments. Results consistently show that ConfliBERT outperforms BERT when analyzing political violence and conflict.more » « less
-
Extracting structured metadata from unstructured text in different domains is gaining strong attention from multiple research communities. In Political Science, these metadata play a significant role on studying intra and inter-state interactions between political entities. The process of extracting such metadata usually relies on domain specific ontologies and knowledge-based repositories. In particular, Political Scientists regularly use the well-defined ontology CAMEO, which is designed for capturing conflict and mediation relations. Since CAMEO repositories are currently human maintained, the high cost and extensive human effort associated with updating them makes it difficult to include new entries on a regular basis. This paper introduces HANKE: an innovative framework for automatically extracting knowledge representations from unstructured sources, in order to extend CAMEO ontology both in the same domain and towards other related domains in political science. HANKE combines Hierarchical Attention Networks as engine for identifying relevant structures in raw-text and the novel Frequency-Based Ranker approach to obtain a collection of candidate entries for CAMEO's repositories. To show the efficiency of the proposed framework, we evaluate its performance on capturing existing CAMEO representations in a soft-labelled dataset. We also empirically demonstrate the versatility and superiority of HANKE method by applying it to two case studies related to CAMEO extension on its actual domain and towards organized crime domain.more » « less