skip to main content


Search for: All records

Creators/Authors contains: "Skrabalak, Sara E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 19, 2025
  2. Metal nanocrystals (NCs) with different structural features are produced by seeded-electrodeposition.

     
    more » « less
    Free, publicly-accessible full text available April 25, 2025
  3. Free, publicly-accessible full text available July 2, 2025
  4. Mixed metal oxyhalides are an exciting class of photocatalysts, capable of the sustainable generation of fuels and remediation of pollutants with solar energy. Bismuth oxyhalides of the types Bi4MO8X (M = Nb and Ta; X = Cl and Br) and Bi2AO4X (A = most lanthanides; X = Cl, Br, and I) have an electronic structure that imparts photostability, as their valence band maxima (VBM) are composed of O 2p orbitals rather than X np orbitals that typify many other bismuth oxyhalides. Here, flux-based synthesis of intergrowth Bi4NbO8Cl–Bi2GdO4Cl is reported, testing the hypothesis that both intergrowth stoichiometry and M identity serve as levers toward tunable optoelectronic properties. X-ray scattering and atomically resolved electron microscopy verify intergrowth formation. Facile manipulation of the Bi4NbO8Cl-to-Bi2GdO4Cl ratio is achieved with the specific ratio influencing both the crystal and electronic structures of the intergrowths. This compositional flexibility and crystal structure engineering can be leveraged for photocatalytic applications, with comparisons to the previously reported Bi4TaO8Cl–Bi2GdO4Cl intergrowth revealing how subtle structural and compositional features can impact photocatalytic materials. 
    more » « less
    Free, publicly-accessible full text available May 6, 2025
  5. Multimetal oxyhalide intergrowths show promise for photocatalytic water splitting. However, the relationships between intergrowth stoichiometry and their electronic and nanoscale structures are yet to be identified. This study investigates Bi4TaO8Cl–Bi2GdO4Cl intergrowths and demonstrates that stoichiometry controls the tilting of [TaO6] octahedra, influencing the bandgap of the photocatalyst and its valence and conduction band positions. To determine how the [TaO6] octahedral tilting in the intergrowths manifests as a function of intergrowth stoichiometry, we investigated changes in crystal symmetry by analyzing features arising at the higher order Laue zone (HOLZ) of convergent-beam electron diffraction patterns. Higher Ta content intergrowths displayed a more intense outer HOLZ ring compared to lower Ta content intergrowths, indicating transformation from P21cn (orthorhombic) to P4/mmm (tetragonal). This finding suggests that more distortion occurs along the ⟨001⟩ directions of the crystal than the ⟨100⟩ and ⟨010⟩ directions. This variation directly impacts the electronic structure, affecting both conduction and valence band energy levels. By combining ultraviolet photoelectron spectroscopy, UV-visible diffuse reflectance spectroscopy, and electron energy loss spectroscopy, the absolute band positions of the intergrowths were determined. Agreement between the bandgaps obtained via ensemble and nanoscale measurements indicates nanoscale homogeneity of the electronic structure. Overall, the integrated approach establishes that the bandgap energy increases with increasing Ta content, which is correlated with the crystal symmetry and [TaO6] octahedral tilting. Broadly, the modular nature of intergrowths provides building block layers to tune octahedral tilting within perovskite layers for manipulation of optoelectronic properties.

     
    more » « less
  6. Galvanic replacement (GR) of monometallic nanoparticles (NPs) provides a versatile route to interesting bimetallic nanostructures, with examples such as nanoboxes, nanocages, nanoshells, nanorings, and heterodimers reported. The replacement of bimetallic templates by a more noble metal can generate trimetallic nanostructures with different architectures, where the specific structure has been shown to depend on the relative reduction potentials of the participating metals and lattice mismatch between the depositing and template metal phases. Now, the role of reaction stoichiometry is shown to direct the overall architecture of multimetallic nanostructures produced by GR with bimetallic templates. Specifically, the number of initial metal islands deposited on a NP template depends on the reaction stoichiometry. This outcome was established by studying the GR process between intermetallic PdCu (i-PdCu) NPs and either AuCl 2 − (Au 1+ ) or AuCl 4 − (Au 3+ ), producing i-PdCu–Au heterostructures. Significantly, multiple Au domains form in the case of GR with AuCl 2 − while only single Au domains form in the case of AuCl 4 − . These different NP architectures and their connection to reaction stoichiometry are consistent with Stranski–Krastanov (SK) growth, providing general guidelines on how the conditions of GR processes can be used to achieve multimetallic nanostructures with different defined architectures. 
    more » « less