skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Skvortsov, Ivan Yu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study focuses on the development of environmentally sustainable polypropylene (PP)-based composites with the potential for biodegradability by incorporating cellulose and the oligomeric siloxane ES-40. Targeting industrial applications such as fused deposition modeling (FDM) 3D printing, ES-40 was employed as a precursor for the in situ formation of silica particles via hydrolytic polycondensation (HPC). Two HPC approaches were investigated: a preliminary reaction in a mixture of cellulose, ethanol, and water, and a direct reaction within the molten PP matrix. The composites were thoroughly characterized using rotational rheometry, optical microscopy, differential scanning calorimetry, and dynamic mechanical analysis. Both methods resulted in composites with markedly reduced crystallinity and shrinkage compared to neat PP, with the lowest shrinkage observed in blends prepared directly in the extruder. The inclusion of cellulose not only enhances the environmental profile of these composites but also paves the way for the development of PP materials with improved biodegradability, highlighting the potential of this technique for fabricating more amorphous composites from crystalline or semi-crystalline polymers for enhancing the quality and dimensional stability of FDM-printed materials. 
    more » « less