skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Skyllingstad, Eric"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract At tidewater glaciers, the ocean supplies heat for submarine ice melt and the glacier supplies freshwater that impacts ocean circulation. Models that employ buoyant plume theory are widely used to represent the effects of subglacial discharge on both glacier melt and freshwater export, but a scarcity of observations means that these models are largely unvalidated. The challenges and inherent risks of working near actively calving glaciers make it difficult to collect in situ observations. This study, conducted at Xeitl Sít’ (LeConte Glacier) in southeast Alaska, reports the first observations of velocity and geometry of the upwelling core of a subglacial discharge plume. This subglacial discharge plume rises along an overcut ice face, with vertical velocities in excess of 1 m s−1, and a plume shape consistent with subglacial discharge emerging from a narrow outlet. Buoyant plume theory, as commonly applied, fails to replicate the observed entrainment, underestimating the plume's volume flux by more than 50%. Large eddy simulations reveal that over half of this mismatch can be attributed to the overcut slope of the ice, which enhances entrainment. Enhanced mixing near the grounding line may account for the additional entrainment. Accurate representation of plume geometry and entrainment is critical for understanding plume‐driven melt of the terminus and the initial mixing of glacial meltwater as it is exported into the ocean. 
    more » « less
    Free, publicly-accessible full text available November 1, 2026
  2. Abstract Feedbacks between ice melt, glacier flow and ocean circulation can rapidly accelerate ice loss at tidewater glaciers and alter projections of sea-level rise. At the core of these projections is a model for ice melt that neglects the fact that glacier ice contains pressurized bubbles of air due to its formation from compressed snow. Current model estimates can underpredict glacier melt at termini outside the region influenced by the subglacial discharge plume by a factor of 10–100 compared with observations. Here we use laboratory-scale experiments and theoretical arguments to show that the bursting of pressurized bubbles from glacier ice could be a source of this discrepancy. These bubbles eject air into the seawater, delivering additional buoyancy and impulses of turbulent kinetic energy to the boundary layer, accelerating ice melt. We show that real glacier ice melts 2.25 times faster than clear bubble-free ice when driven by natural convection in a laboratory setting. We extend these results to the geophysical scale to show how bubble dynamics contribute to ice melt from tidewater glaciers. Consequently, these results could increase the accuracy of modelled predictions of ice loss to better constrain sea-level rise projections globally. 
    more » « less