Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Abstract Machine-learning-based methods that identify drought in three-dimensional space–time are applied to climate model simulations and tree-ring-based reconstructions of hydroclimate over the Northern Hemisphere extratropics for the past 1000 years, as well as twenty-first-century projections. Analyzing reconstructed and simulated drought in this context provides a paleoclimate constraint on the spatiotemporal characteristics of simulated droughts. Climate models project that there will be large increases in the persistence and severity of droughts over the coming century, but with little change in their spatial extent. Nevertheless, climate models exhibit biases in the spatiotemporal characteristics of persistent and severe droughts over parts of the Northern Hemisphere. We use the paleoclimate record and results from a linear inverse modeling-based framework to conclude that climate models underestimate the range of potential future hydroclimate states. Complicating this picture, however, are divergent changes in the characteristics of persistent and severe droughts when quantified using different hydroclimate metrics. Collectively our results imply that these divergent responses and the aforementioned biases must be better understood if we are to increase confidence in future hydroclimate projections. Importantly, the novel framework presented herein can be applied to other climate features to robustly describe their spatiotemporal characteristics and provide constraints on future changes to those characteristics.more » « less
-
Abstract Austral summer precipitation increased by 27% from 1902 to 2020 over southeastern South America (SESA), one of the largest centennial precipitation trends observed globally. We assess the influence of the South American low‐level jet on the SESA precipitation trend by analyzing low‐level moisture fluxes into SESA in two reanalysis datasets from 1951 to 2020. Increased moisture flux through the jet accounts for 20%–45% of the observed SESA precipitation trend. While results vary among reanalyzes, both point to increased humidity as a fundamental driver of increased moisture flux and SESA precipitation. Increased humidity within the jet is consistent with warming sea surface temperatures driven by anthropogenic forcing, although additional natural climate variations also may have played a role. The jet's velocity also increased, further enhancing precipitation, but without a clear connection to anthropogenic forcing. Our findings indicate the SESA precipitation trend is partly attributable to jet intensification arising from both natural variability and anthropogenic forcing.
-
Abstract Large volcanic eruptions are one of the dominant perturbations to global and regional atmospheric temperatures on timescales of years to decades. Discrepancies remain, however, in the estimated magnitude and persistence of the surface temperature cooling caused by volcanic eruptions, as characterized by paleoclimatic proxies and climate models. We investigate these discrepancies in the context of large tropical eruptions over the Last Millennium using two state‐of‐the‐art data assimilation products, the Paleo Hydrodynamics Data Assimilation product (PHYDA) and the Last Millennium Reanalysis (LMR), and simulations from the National Center for Atmospheric Research Community Earth System Model‐Last Millennium Ensemble (NCAR CESM‐LME). We find that PHYDA and LMR estimate mean global and hemispheric cooling that is similar in magnitude and persistence once effects from eruptions occurring in short succession are removed. The estimates also compare well to Northern‐Hemisphere reconstructions based solely or partially on tree‐ring density, which have been proposed as the most accurate proxy estimates of surface cooling due to volcanism. All proxy‐based estimates also agree well with the magnitude of the mean cooling simulated by the CESM‐LME. Differences remain, however, in the spatial patterns of the temperature responses in the PHYDA, LMR, and the CESM‐LME. The duration of cooling anomalies also persists for several years longer in the PHYDA and LMR relative to the CESM‐LME. Our results demonstrate progress in resolving discrepancies between proxy‐ and model‐based estimates of temperature responses to volcanism, but also indicate these estimates must be further reconciled to better characterize the risks of future volcanic eruptions.