Two-loop multi-leg form factors in off-shell kinematics require knowledge of planar and nonplanar double box Feynman diagrams with massless internal propagators. These are complicated functions of Mandelstam variables and external particle virtualities. The latter serve as regulators of infrared divergences, thus making these observables finite in four space-time dimensions. In this paper, we use the method of canonical differential equations for the calculation of (non)planar double box integrals in the near mass-shell kinematical regime, i.e., where virtualities of external particles are much smaller than the Mandelstam variables involved. We deduce a basis of master integrals with uniform transcendental weight based on the analysis of leading singularities employing the Baikov representation as well as an array of complementary techniques. We dub the former asymptotically canonical since it is valid in the near mass-shell limit of interest. We iteratively solve resulting differential equations up to weight four in terms of multiple polylogarithms.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A bstract Free, publicly-accessible full text available May 1, 2025 -
We study the form factor of the lowest component of the stress-tensor multiplet away from the origin of the moduli space in the spontaneously broken, aka Coulomb, phase of the maximally supersymmetric Yang-Mills theory for decay into three massive W-bosons. The calculations are done at two-loop order by deriving and solving canonical differential equations in the asymptotical limit of nearly vanishing W-masses. We confirm our previous findings that infrared physics of `off-shell observables' is governed by the octagon anomalous dimension rather than the cusp. In addition, the form factor in question possesses a nontrivial remainder function, which was found to be identical to the massless case, upon a proper subtraction of infrared logarithms (and finite terms). However, the iterative structure of the object is more intricate and is not simply related to the previous orders in coupling as opposed to amplitudes/form factors at the origin of the moduli space.more » « lessFree, publicly-accessible full text available February 28, 2025
-
A bstract In this paper we provide a detailed account of our calculation, briefly reported in
arXiv:2209.09263 , of a two-particle form factor of the lowest components of the stress-tensor multiplet in = 4 sYM theory on its Coulomb branch, which is interpreted as an off-shell kinematical regime. We demonstrate that up to three-loop order, both its infrared-divergent as well as finite parts do exponentiate in the Sudakov regime, with the coefficient accompanying the double logarithm being determined by the octagon anomalous dimension Γoct. We also observe that up to this order in ’t Hooft coupling the logarithm of the Sudakov form factor is identical to twice the logarithm of the null octagon, which was introduced within the context of integrability-based computation of four point correlators with infinitely large R-charges. The null octagon is known in a closed form for all values of the ’t Hooft coupling constant and kinematical parameters. We conjecture that the relation between the former and the off-shell Sudakov form factor holds to all loop orders.$$ \mathcal{N} $$ -
A bstract It is well-known that on-shell maximally helicity-violating gluon scattering amplitudes in planar maximally supersymmetric Yang-Mills theory are dual to a bosonic Wilson loop on a null-polygonal contour. The light-like nature of the intervals is a reflection of the mass-shell condition for massless gluons involved in scattering. Presently, we introduce a Wilson loop prototype on a piece-wise curvilinear contour that can be interpreted in the T-dual language to correspond to nonvanishing gluon off-shellness. We analyze it first for four sites at one loop and demonstrate that it coincides with the four-gluon amplitude on the Coulomb branch. Encouraged by this fact, we move on to the two-loop order. To simplify our considerations, we only focus on the Sudakov asymptotics of the Wilson loop, when the off-shellness goes to zero. The latter serves as a regulator of short-distance divergences around the perimeter of the loop, i.e., divergences when gluons are integrated over a small vicinity of the Wilson loop cusps. It does not however regulate conventional ultraviolet divergences of interior closed loops. This unavoidably introduces a renormalization scale dependence and thus scheme dependence into the problem. With a choice of the scale setting and a finite renormalization, we observe exponentiation of the double logarithmic scaling of the Wilson loop with the accompanying exponent being given by the so-called hexagon anomalous dimension, which recently made its debut in the origin limit of six-leg gluon amplitudes. This is contrary to the expectation for the octagon anomalous dimension to rather emerge from our analysis suggesting that the current object encodes physics different from the Coulomb branch scattering amplitudes.more » « less
-
Free, publicly-accessible full text available January 1, 2026
-
Abstract Computing demands for large scientific experiments, such as the CMS experiment at the CERN LHC, will increase dramatically in the next decades. To complement the future performance increases of software running on central processing units (CPUs), explorations of coprocessor usage in data processing hold great potential and interest. Coprocessors are a class of computer processors that supplement CPUs, often improving the execution of certain functions due to architectural design choices. We explore the approach of Services for Optimized Network Inference on Coprocessors (SONIC) and study the deployment of this as-a-service approach in large-scale data processing. In the studies, we take a data processing workflow of the CMS experiment and run the main workflow on CPUs, while offloading several machine learning (ML) inference tasks onto either remote or local coprocessors, specifically graphics processing units (GPUs). With experiments performed at Google Cloud, the Purdue Tier-2 computing center, and combinations of the two, we demonstrate the acceleration of these ML algorithms individually on coprocessors and the corresponding throughput improvement for the entire workflow. This approach can be easily generalized to different types of coprocessors and deployed on local CPUs without decreasing the throughput performance. We emphasize that the SONIC approach enables high coprocessor usage and enables the portability to run workflows on different types of coprocessors.
Free, publicly-accessible full text available December 1, 2025 -
A bstract A measurement is performed of Higgs bosons produced with high transverse momentum (
p T) via vector boson or gluon fusion in proton-proton collisions. The result is based on a data set with a center-of-mass energy of 13 TeV collected in 2016–2018 with the CMS detector at the LHC and corresponds to an integrated luminosity of 138 fb− 1. The decay of a high-p THiggs boson to a boosted bottom quark-antiquark pair is selected using large-radius jets and employing jet substructure and heavy-flavor taggers based on machine learning techniques. Independent regions targeting the vector boson and gluon fusion mechanisms are defined based on the topology of two quark-initiated jets with large pseudorapidity separation. The signal strengths for both processes are extracted simultaneously by performing a maximum likelihood fit to data in the large-radius jet mass distribution. The observed signal strengths relative to the standard model expectation are and$$ {4.9}_{-1.6}^{+1.9} $$ for the vector boson and gluon fusion mechanisms, respectively. A differential cross section measurement is also reported in the simplified template cross section framework.$$ {1.6}_{-1.5}^{+1.7} $$ Free, publicly-accessible full text available December 1, 2025 -
Abstract This paper describes the
Combine software package used for statistical analyses by the CMS Collaboration. The package, originally designed to perform searches for a Higgs boson and the combined analysis of those searches, has evolved to become the statistical analysis tool presently used in the majority of measurements and searches performed by the CMS Collaboration. It is not specific to the CMS experiment, and this paper is intended to serve as a reference for users outside of the CMS Collaboration, providing an outline of the most salient features and capabilities. Readers are provided with the possibility to runCombine and reproduce examples provided in this paper using a publicly available container image. Since the package is constantly evolving to meet the demands of ever-increasing data sets and analysis sophistication, this paper cannot cover all details ofCombine . However, the online documentation referenced within this paper provides an up-to-date and complete user guide.Free, publicly-accessible full text available December 1, 2025 -
Abstract A search is reported for charge-parity
violation in$$CP$$ decays, using data collected in proton–proton collisions at$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} $$ recorded by the CMS experiment in 2018. The analysis uses a dedicated data set that corresponds to an integrated luminosity of 41.6$$\sqrt{s} = 13\,\text {Te}\hspace{-.08em}\text {V} $$ , which consists of about 10 billion events containing a pair of b hadrons, nearly all of which decay to charm hadrons. The flavor of the neutral D meson is determined by the pion charge in the reconstructed decays$$\,\text {fb}^{-1}$$ and$${{{\textrm{D}}}^{{*+}}} \rightarrow {{{\textrm{D}}}^{{0}}} {{{\mathrm{\uppi }}}^{{+}}} $$ . The$${{{\textrm{D}}}^{{*-}}} \rightarrow {\overline{{\textrm{D}}}^{{0}}} {{{\mathrm{\uppi }}}^{{-}}} $$ asymmetry in$$CP$$ is measured to be$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} $$ , where the three uncertainties represent the statistical uncertainty, the systematic uncertainty, and the uncertainty in the measurement of the$$A_{CP} ({{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} ) = (6.2 \pm 3.0 \pm 0.2 \pm 0.8)\%$$ asymmetry in the$$CP$$ decay. This is the first$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{{\mathrm{\uppi }}}^{{+}}} {{{\mathrm{\uppi }}}^{{-}}} $$ asymmetry measurement by CMS in the charm sector as well as the first to utilize a fully hadronic final state.$$CP$$ Free, publicly-accessible full text available December 1, 2025