skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Smith, Adam L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Phage emit communication signals that inform their lytic and lysogenic life cycles. However, little is known regarding the abundance and diversity of the genes associated with phage communication systems in wastewater treatment microbial communities. This study focused on phage communities within two distinct biochemical wastewater environments, specifically aerobic membrane bioreactors (AeMBRs) and anaerobic membrane bioreactors (AnMBRs) exposed to varying antibiotic concentrations. Metagenomic data from the bench-scale systems were analyzed to explore phage phylogeny, life cycles, and genetic capacity for antimicrobial resistance and quorum sensing. Two dominant phage families, Schitoviridae and Peduoviridae, exhibited redox-dependent dynamics. Schitoviridae prevailed in anaerobic conditions, while Peduoviridae dominated in aerobic conditions. Notably, the abundance of lytic and lysogenic proteins varied across conditions, suggesting the coexistence of both life cycles. Furthermore, the presence of antibiotic resistance genes (ARGs) within viral contigs highlighted the potential for phage to transfer ARGs in AeMBRs. Finally, quorum sensing genes in the virome of AeMBRs indicated possible molecular signaling between phage and bacteria. Overall, this study provides insights into the dynamics of viral communities across varied redox conditions in MBRs. These findings shed light on phage life cycles, and auxiliary genetic capacity such as antibiotic resistance and bacterial quorum sensing within wastewater treatment microbial communities. 
    more » « less