skip to main content


Search for: All records

Creators/Authors contains: "Smith, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Galactic cosmic rays (GCRs) interact with matter in the atmosphere and at the surface of the Earth to produce a range of cosmogenic nuclides. Measurements of cosmogenic nuclides produced in surface rocks have been used to study past land ice extent as well as to estimate erosion rates. Because the GCR flux reaching the Earth is modulated by magnetic fields (solar and Earth's), records of cosmogenic nuclides produced in the atmosphere have also been used for studies of past solar activity. Studies utilizing cosmogenic nuclides assume that the GCR flux is constant in time, but this assumption may be uncertain by 30 % or more. Here we propose that measurements of 14C of carbon monoxide (14CO) in ice cores at low-accumulation sites can be used as a proxy for variations in GCR flux on timescales of several thousand years. At low-accumulation ice core sites, 14CO in ice below the firn zone originates almost entirely from in situ cosmogenic production by deep-penetrating secondary cosmic ray muons. The flux of such muons is almost insensitive to solar and geomagnetic variations and depends only on the primary GCR flux intensity. We use an empirically constrained model of in situ cosmogenic 14CO production in ice in combination with a statistical analysis to explore the sensitivity of ice core 14CO measurements at Dome C, Antarctica, to variations in the GCR flux over the past ≈ 7000 years. We find that Dome C 14CO measurements would be able to detect a linear change of 6 % over 7 ka, a step increase of 6 % at 3.5 ka or a transient 100-year spike of 190 % at 3.5 ka at the 3σ significance level. The ice core 14CO proxy therefore appears promising for the purpose of providing a high-precision test of the assumption of GCR flux constancy over the Holocene.

     
    more » « less
    Free, publicly-accessible full text available August 6, 2025
  2. Photonic crystals are used to amplify the fluorescence emission and collection efficiency from quantum dots and plasmonic fluor nanoparticles to enable miRNA and proteins to be detected from plasma with single molecule precision, with simple 1-step assays. 
    more » « less
    Free, publicly-accessible full text available July 18, 2025
  3. We present advanced biosensing methods with photonics crystal enhanced fluorescence emission from Quantum Dots, Plasmonic Fluorophores, and DNA Nano-grippers for nucleic acid, protein, and pathogen detection 
    more » « less
    Free, publicly-accessible full text available May 6, 2025
  4. Assessing perceived vulnerability to a health threat is essential to understanding how people conceptualize their risk, and to predicting how likely they are to engage in protective behaviors. However, there is limited consensus about which of many measures of perceived vulnerability predict behavior best. We tested whether the ability of different measures to predict protective intentions varies as a function of the type of information people learn about their risk. Online participants (N = 909) read information about a novel respiratory disease before answering measures of perceived vulnerability and vaccination intentions. Type-of-risk information was varied across three between-participant groups. Participants learned either: (1) only information about their comparative standing on the primary risk factors (comparative-only), (2) their comparative standing as well as the base-rate of the disease in the population (+ base-rate), or (3) their comparative standing as well as more specific estimates of their absolute risk (+ absolute-chart). Experiential and affective measures of perceived vulnerability predicted protective intentions well regardless of how participants learned about their risk, while the predictive ability of deliberative numeric and comparative measures varied based on the type of risk information provided. These results broaden the generalizability of key prior findings (i.e., some prior findings about which measures predict best may apply no matter how people learn about their risk), but the results also reveal boundary conditions and critical points of distinction for determining how to best assess perceived vulnerability. 
    more » « less
  5. Abstract

    The evolution of the hominin hand has been widely linked to the use and production of flaked stone tool technologies. After the earliest handheld flake tools emerged, shifts in hominin hand anatomy allowing for greater force during precision gripping and ease when manipulating objects in-hand are observed in the fossil record. Previous research has demonstrated how biometric traits, such as hand and digit lengths and precision grip strength, impact functional performance and ergonomic relationships when using flake and core technologies. These studies are consistent with the idea that evolutionary selective pressures would have favoured individuals better able to efficiently and effectively produce and use flaked stone tools. After the advent of composite technologies during the Middle Stone Age and Middle Palaeolithic, fossil evidence reveals differences in hand anatomy between populations, but there is minimal evidence for an increase in precision gripping capabilities. Furthermore, there is little research investigating the selective pressures, if any, impacting manual anatomy after the introduction of hafted composite stone technologies (‘handles’). Here we investigated the possible influence of tool-user biometric variation on the functional performance of 420 hafted Clovis knife replicas. Our results suggest there to be no statistical relationships between biometric variables and cutting performance. Therefore, we argue that the advent of hafted stone technologies may have acted as a ‘performance equaliser’ within populations and removed (or reduced) selective pressures favouring forceful precision gripping capabilities, which in turn could have increased the relative importance of cultural evolutionary selective pressures in the determination of a stone tool’s performance.

     
    more » « less
  6. This paper presents a comprehensive river discharge analysis to estimate past and future hydrological extremes across Morocco. Hydrological simulations with historical forcing and climate change scenario inputs have been performed to better understand the change in magnitude and frequency of extreme discharge events that cause flooding. Simulations are applied to all major rivers of Morocco, including a total of 16 basins that cover the majority of the country. An ensemble of temperature and precipitation input parameter sets was generated to analyze input uncertainty, an approach that can be extended to other regions of the world, including data-sparse regions. Parameter uncertainty was also included in the analyses. Historical simulations comprise the period 1979–2021, while future simulations (2015–2100) were performed under the Shared Socioeconomic Pathway (SSP) 2–4.5 and SSP5–8.5. Clear patterns of changing flood extremes are projected; these changes are significant when considered as a proportion of the land area of the country. Two types of basins have been identified, based on their different behavior in climate change scenarios. In the Northern/Mediterranean basins we observe a decrease in the frequency and intensity of events by 2050 under both SSPs, whereas for the remaining catchments higher and more frequent high-flow events in the form of flash floods are detected. Our analysis revealed that this is a consequence of the reduction in rainfall accumulation and intensity in both SSPs for the first type of basins, while the opposite applies to the other type. More generally, we propose a methodology that does not rely on observed time series of discharge, so especially for regions where those do not exist or are not available, and that can be applied to undertake future flood projections in the most data-scarce regions. This method allows future hydrological hazards to be estimated for essentially any region of the world.

     
    more » « less
  7. Abstract

    Spin Hall oscillators (SHOs) based on bilayers of a ferromagnet (FM) and a non-magnetic heavy metal (HM) are electrically tunable nanoscale microwave signal generators. Achieving high output power in SHOs requires driving large-amplitude magnetization dynamics by a direct spin Hall current. Here we present an SHO engineered to have easy-plane magnetic anisotropy oriented normal to the bilayer plane, enabling large-amplitude easy-plane dynamics driven by spin Hall current. Our experiments and micromagnetic simulations demonstrate that the easy-plane anisotropy can be achieved by tuning the magnetic shape anisotropy and perpendicular magnetic anisotropy in a nanowire SHO, leading to a significant enhancement of the generated microwave power. The easy-plane SHO experimentally demonstrated here is an ideal candidate for realization of a spintronic spiking neuron. Our results provide an approach to design of high-power SHOs for wireless communications, neuromorphic computing, and microwave assisted magnetic recording.

     
    more » « less
  8. Non-stoichiometric perovskite oxides have been studied as a new family of redox oxides for solar thermochemical hydrogen (STCH) production owing to their favourable thermodynamic properties. However, conventional perovskite oxides suffer from limited phase stability and kinetic properties, and poor cyclability. Here, we report a strategy of introducing A-site multi-principal-component mixing to develop a high-entropy perovskite oxide, (La1/6Pr1/6Nd1/6Gd1/6Sr1/6Ba1/6)MnO3 (LPNGSB_Mn), which shows desirable thermodynamic and kinetics properties as well as excellent phase stability and cycling durability. LPNGSB_Mn exhibits enhanced hydrogen production (∼77.5 mmol/mol-oxide) compared to (La2/3Sr1/3)MnO3 (∼53.5 mmol / mol-oxide) in a short 1 hour redox duration and high STCH and phase stability for 50 cycles. LPNGSB_Mn possesses a moderate enthalpy of reduction (252.51–296.32 kJ / mol-oxide), a high entropy of reduction (126.95–168.85 J / mol-oxide), and fast surface oxygen exchange kinetics. All A-site cations do not show observable valence changes during the reduction and oxidation processes. This research preliminarily explores the use of one A-site high-entropy perovskite oxide for STCH. 
    more » « less
    Free, publicly-accessible full text available February 13, 2025