skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Smith, Brandt"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Most animals elevate cardiac output during exercise through a rise in heart rate ( f H ), whereas stroke volume (V S ) remains relatively unchanged. Cardiac pacing reveals that elevating f H alone does not alter cardiac output, which is instead largely regulated by the peripheral vasculature. In terms of myocardial oxygen demand, an increase in f H is more costly than that which would incur if V S instead were to increase. We hypothesized that f H must increase because any substantial rise in V S would be constrained by the pericardium. To investigate this hypothesis, we explored the effects of pharmacologically induced bradycardia, with ivabradine treatment, on V S at rest and during exercise in the common snapping turtle ( Chelydra serpentina) with intact or opened pericardium. We first showed that, in isolated myocardial preparations, ivabradine exerted a pronounced positive inotropic effect on atrial tissue but only minor effects on ventricle. Ivabradine reduced f H in vivo, such that exercise tachycardia was attenuated. Pulmonary and systemic V S rose in response to ivabradine. The rise in pulmonary V S largely compensated for the bradycardia at rest, leaving total pulmonary flow unchanged by ivabradine, although ivabradine reduced pulmonary blood flow during swimming (exercise × ivabradine interaction, P < 0.05). Although systemic V S increased, systemic blood flow was reduced by ivabradine both at rest and during exercise, despite ivabradine’s potential to increase cardiac contractility. Opening the pericardium had no effect on f H , V S , or blood flows before or after ivabradine, indicating that the pericardium does not constrain VS in turtles, even during pharmacologically induced bradycardia. 
    more » « less