skip to main content


Search for: All records

Creators/Authors contains: "Smith, Celia M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In mesophotic coral ecosystems, reef-building corals and their photosynthetic symbionts can survive with less than 1% of surface irradiance. How depth-specialist corals rely upon autotrophically and heterotrophically derived energy sources across the mesophotic zone remains unclear. We analysed the stable carbon (δ13C) and nitrogen (δ15N) isotope values of aLeptoseriscommunity from the ‘Au‘au Channel, Maui, Hawai‘i (65–125 m) including four coral host species living symbiotically with three algal haplotypes. We characterized the isotope values of hosts and symbionts across species and depth to compare trophic strategies. Symbiontδ13C was consistently 0.5‰ higher than hostδ13C at all depths. Mean colony host and symbiontδ15N differed by up to 3.7‰ at shallow depths and converged at deeper depths. These results suggest that both heterotrophy and autotrophy remained integral to colony survival across depth. The increasing similarity between host and symbiontδ15N at deeper depths suggests that nitrogen is more efficiently shared between mesophotic coral hosts and their algal symbionts to sustain autotrophy. Isotopic trends across depth did not generally vary by host species or algal haplotype, suggesting that photosynthesis remains essential toLeptoserissurvival and growth despite low light availability in the mesophotic zone.

     
    more » « less
    Free, publicly-accessible full text available February 28, 2025
  2. Abstract

    Over the last 2 decades, routine collections in the Hawaiian Archipelago have expanded to mesophotic reefs, leading to the discovery of a new red algal genus and species, here described asAnunuuluaehu liulagen. et sp. nov. This study provides a detailed genus and species description and characterizes chloroplast and mitochondrial organellar genomes. The new genus,Anunuuluaehu, shares many characteristics with the family Phyllophoraceae and shows close similarities toArchestennogrammaandStenogramma, including habit morphology, nemathecia forming proliferations at the outer cortex with terminal chains of tetrasporangia, and carposporophytes with multi‐layered pericarps. The single species in this genus exhibits distinctive features within the Phyllophoraceae: the presence of single‐layer construction of large medullary cells and the development of long, tubular gonimoblastic filaments. Multi‐gene phylogenetic analyses confirmed it as a unique, monophyletic lineage within the family. Cis‐splicing genes, interrupted by intron‐encoded proteins within group II introns, are present in both the chloroplast and mitochondrial genomes ofA. liula. Notably, a specific region of thecoxI group II intron exhibits similarity to fungal introns.Anunuuluaehu liulais presumed to be endemic to the Hawaiian Archipelago and thus far is known to live solely at mesophotic depths from Hōlanikū to Kaho‘olawe ranging from 54 to 201 m, which is the deepest collection record of any representative in the family. Overall, this study enhances our understanding of the genomic and taxonomic complexities of red algae in mesophotic habitats, emphasizing the significance of continued research in this area to uncover further insights into evolutionary processes and biogeographic patterns.

     
    more » « less
  3. Two genera of the Rhodymeniales, Halopeltis and Leptofauchea, are here reported for the first time from the Hawaiian Islands and represent the deepest records for both genera. Molecular phylogenetic analyses of cytochrome oxidase subunit I (COI), rbcL, and large subunit ribosomal DNA (LSU) sequences for Hawaiian specimens of Leptofauchea revealed one well-supported clade of Hawaiian specimens and three additional lineages. One of these clades is described here as Leptofauchea huawelau sp. nov., and is thus far known only from mesophotic depths at Penguin Bank in the Main Hawaiian Islands. L. huawelau sp. nov. is up to 21 cm, and is the largest known species. An additional lineage identified in the LSU and rbcL analyses corresponds to the recently described L. lucida from Western Australia, and is a new record for Hawai‘i. Hawaiian Halopeltis formed a well-supported clade along with H. adnata from Korea, the recently described H. tanakae from mesophotic depths in Japan, and H. willisii from North Carolina, and is here described as Halopeltis nuahilihilia sp. nov. H. nuahilihilia sp. nov. has a distinctive morphology of narrow vegetative axes that harbor constrictions along their length. The current distribution of H. nuahilihilia includes mesophotic depths around W. Maui, W. Moloka‘i, and the island of Hawai‘i in the Main Hawaiian Islands. Few reproductive characters were observed because of the small number of specimens available; however, both species are distinct based on phylogeny and morphology. These descriptions further emphasize the Hawaiian mesophotic zone as a location harboring many undescribed species of marine macroalgae. 
    more » « less
  4. Abstract

    The enemy release hypothesis (ERH) posits that introduced species often leave their enemies behind when introduced to a new range. This release from enemies may allow introduced species to achieve higher growth and reproduction and may explain why some invaders flourish in new locations. Red mangroves (Rhizophora mangle) were introduced to Hawaiʻi from Florida over a century ago. Because Hawaiʻi has no native mangroves, the arrival ofR. manglefundamentally changed the structure and function of estuarine shorelines. While numerous enemies affect red mangroves in their native range (tropical America), in Hawaiʻi, mangroves apparently experience little herbivory, which may explain why introduced mangroves are so productive, fecund, and continue to spread. In this study, we compared the effects of enemies in native and introduced populations of brackish red mangroves (R. mangle) in 8–10 sites in the native range (Florida, Belize, and Panama) and introduced range of mangroves (Hawaiʻi). At each site, we measured the (1) occurrence of enemies using timed visual surveys, (2) occurrence of damage to different mangrove structures (leaves, apical buds, dead twigs, roots, propagules, and seedlings), and (3) rate of propagule herbivory using tethering experiments. Consistent with the ERH, we found an order of magnitude less damage and fewer enemies in introduced than native mangrove sites. While introduced mangroves harbored few enemies and minimal damage, native mangroves were affected by numerous enemies, including leaf‐eating crabs, specialist bud moths, wood‐boring insects and isopods, and propagule predators. These patterns were consistent across all plant structures (roots to leaves), among marine and terrestrial enemies, and across functional groups (browsers, borers, pathogens, etc.), which demonstrates enemy escape occurs consistently among different functional groups and via trophic (e.g., herbivores) and non‐trophic (e.g., root borers) interactions. Our study is among the first biogeographical enemy release studies to take a comprehensive approach to quantifying the occurrence of damage from a broad suite of marine and terrestrial taxa across an array of wetland plant structures. Understanding how natural enemies alter this key foundation species will become increasingly relevant globally as mangroves continue to invade new regions through intentional plantings or range expansion driven by climate change.

     
    more » « less
  5. Abstract

    Coastal groundwater‐dependent ecosystems benefit from lowered salinity, nutrient‐rich submarine groundwater discharge (SGD). Across Pacific islands marine macroalgae appear to have been challenged by and adapted to the stress of lowered salinity with a trade‐off of nutrient subsidies delivered by SGD. Human alterations of groundwater resources and climate change‐driven shifts brought modifications to the magnitude and composition of SGD. This paper discusses how native macroalgae have adapted to SGD nutrient and salinity gradients, but that invasive algae are outcompeting the natives near SGD with nutrient pollution. It is important to re‐evaluate land and water use practices by modifying groundwater sustainable yields and improving wastewater infrastructure to keep SGD reductions minimal and nitrogen inputs in optimal ranges. This task may be particularly challenging amidst global sea level rise and reductions in groundwater recharge, which threaten coastal groundwater systems and ecosystems dependent on them.

     
    more » « less
  6. Abstract

    Mesophotic reef corals remain largely unexplored in terms of the genetic adaptations and physiological mechanisms to acquire, allocate, and use energy for survival and reproduction. In the Hawaiian Archipelago, theLeptoserisspecies complex form the most spatially extensive mesophotic coral ecosystem known and provide habitat for a unique community. To study how the ecophysiology ofLeptoserisspecies relates to symbiont–host specialization and understand the mechanisms responsible for coral energy acquisition in extreme low light environments, we examinedSymbiodinium(endosymbiotic dinoflagellate) photobiological characteristics and the lipids and isotopic signatures fromSymbiodiniumand coral hosts over a depth‐dependent light gradient (55–7μmol photons m−2s−1, 60–132 m). Clear performance differences demonstrate different photoadaptation and photoacclimatization across this genus. Our results also show that flexibility in photoacclimatization depends primarily onSymbiodiniumtype. Colonies harboringSymbiodiniumsp.COI‐2showed significant increases in photosynthetic pigment content with increasing depth, whereas colonies harboringSymbiodiniumspp.COI‐1andCOI‐3showed variability in pigment composition, yield measurements for photosystem II, as well as size and density ofSymbiodiniumcells. Despite remarkable differences in photosynthetic adaptive strategies, there were no significant differences among lipids ofLeptoserisspecies with depth. Finally, isotopic signatures of both host andSymbiodiniumchanged with depth, indicating that coral colonies acquired energy from different sources depending on depth. This study highlights the complexity in physiological adaptations within this symbiosis and the different strategies used by closely related mesophotic species to diversify energy acquisition and to successfully establish and compete in extreme light‐limited environments.

     
    more » « less