skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Smith, Jeremy C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The main protease (M pro ) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an attractive target for antiviral therapeutics. Recently, many high-resolution apo and inhibitor-bound structures of M pro , a cysteine protease, have been determined, facilitating structure-based drug design. M pro plays a central role in the viral life cycle by catalyzing the cleavage of SARS-CoV-2 polyproteins. In addition to the catalytic dyad His41–Cys145, M pro contains multiple histidines including His163, His164, and His172. The protonation states of these histidines and the catalytic nucleophile Cys145 have been debated in previous studies of SARS-CoV M pro , but have yet to be investigated for SARS-CoV-2. In this work we have used molecular dynamics simulations to determine the structural stability of SARS-CoV-2 M pro as a function of the protonation assignments for these residues. We simulated both the apo and inhibitor-bound enzyme and found that the conformational stability of the binding site, bound inhibitors, and the hydrogen bond networks of M pro are highly sensitive to these assignments. Additionally, the two inhibitors studied, the peptidomimetic N3 and an α-ketoamide, display distinct His41/His164 protonation-state-dependent stabilities. While the apo and the N3-bound systems favored N δ (HD) and N ϵ (HE) protonation of His41 and His164, respectively, the α-ketoamide was not stably bound in this state. Our results illustrate the importance of using appropriate histidine protonation states to accurately model the structure and dynamics of SARS-CoV-2 M pro in both the apo and inhibitor-bound states, a necessary prerequisite for drug-design efforts. 
    more » « less
  2. The scattering of neutrons can be used to provide information on the structure and dynamics of biological systems on multiple length and time scales. Pursuant to a National Science Foundation-funded workshop in February 2018, recent developments in this field are reviewed here, as well as future prospects that can be expected given recent advances in sources, instrumentation and computational power and methods. Crystallography, solution scattering, dynamics, membranes, labeling and imaging are examined. For the extraction of maximum information, the incorporation of judicious specific deuterium labeling, the integration of several types of experiment, and interpretation using high-performance computer simulation models are often found to be particularly powerful. 
    more » « less
  3. Themeroperon in bacteria encodes a set of proteins and enzymes that impart resistance to environmental mercury toxicity by importing Hg2+and reducing it to volatile Hg(0). Because the reduction occurs in the cytoplasm, mercuric ions must first be transported across the cytoplasmic membrane by one of a few known transporters. MerF is the smallest of these, containing only two transmembrane helices and two pairs of vicinal cysteines that coordinate mercuric ions. In this work, we use molecular dynamics simulations to characterize the dynamics of MerF in its apo and Hg2+‐bound states. We find that the apo state positions one of the cysteine pairs closer to the periplasmic side of the membrane, while in the bound state the same pair approaches the cytoplasmic side. This finding is consistent with the functional requirement of accepting Hg2+from the periplasmic space, sequestering it on acceptance, and transferring it to the cytoplasm. Conformational changes in the TM helices facilitate the functional interaction of the two cysteine pairs. Free‐energy calculations provide a barrier of 16 kcal/mol for the association of the periplasmic Hg2+‐bound protein MerP with MerF and 7 kcal/mol for the subsequent association of MerF's two cysteine pairs. Despite the significant conformational changes required to move the binding site across the membrane, coarse‐grained simulations of multiple copies of MerF support the expectation that it functions as a monomer. Our results demonstrate how conformational changes and binding thermodynamics could lead to such a small membrane protein acting as an ion transporter. Published 2019. This article is a U.S. Government work and is in the public domain in the USA.

    more » « less
  4. Summary

    A microbe’s ecological niche and biotechnological utility are determined by its specific set of co‐evolved metabolic pathways. The acquisition of new pathways, through horizontal gene transfer or genetic engineering, can have unpredictable consequences. Here we show that two different pathways for coumarate catabolism failed to function when initially transferred intoEscherichia coli. Using laboratory evolution, we elucidated the factors limiting activity of the newly acquired pathways and the modifications required to overcome these limitations. Both pathways required host mutations to enable effective growth with coumarate, but the necessary mutations differed. In one case, a pathway intermediate inhibited purine nucleotide biosynthesis, and this inhibition was relieved by single amino acid replacements in IMP dehydrogenase. A strain that natively contains this coumarate catabolism pathway,Acinetobacter baumannii, is resistant to inhibition by the relevant intermediate, suggesting that natural pathway transfers have faced and overcome similar challenges. Molecular dynamics simulation of the wild type and a representative single‐residue mutant provide insight into the structural and dynamic changes that relieve inhibition. These results demonstrate how deleterious interactions can limit pathway transfer, that these interactions can be traced to specific molecular interactions between host and pathway, and how evolution or engineering can alleviate these limitations.

    more » « less