Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cosmic Explorer is a next-generation ground-based gravitational-wave observatory that is being designed in the 2020s and is envisioned to begin operations in the 2030s together with the Einstein Telescope in Europe. The Cosmic Explorer concept currently consists of two widely separated L-shaped observatories in the United States, one with 40 km-long arms and the other with 20 km-long arms. This order of magnitude increase in scale with respect to the LIGO-Virgo-KAGRA observatories will, together with technological improvements, deliver an order of magnitude greater astronomical reach, allowing access to gravitational waves from remnants of the first stars and opening a wide discovery aperture to the novel and unknown. In addition to pushing the reach of gravitational-wave astronomy, Cosmic Explorer endeavors to approach the lifecycle of large scientific facilities in a way that prioritizes mutually beneficial relationships with local and Indigenous communities. This article describes the (scientific, cost and access, and social) criteria that will be used to identify and evaluate locations that could potentially host the Cosmic Explorer observatories.more » « lessFree, publicly-accessible full text available January 1, 2026
-
New methods of passive wireless communication are presented where no RF carrier is needed. Instead, data is wirelessly transmitted by modulating noise sources, from those found in electronic components to extraterrestrial noise sources. Any pair of noise sources with a difference in noise temperature can be used to enable communication. We discuss using the Earth, the Moon, the Sun, the coldness of space, and Active Cold Load circuits as sources of thermal contrast. We present Cosmic Backscatter and demonstrate that wireless connectivity can be enabled by switching an antenna connection between the "cold" Sky and a "hot" 50Ω resistor. Furthermore, we present Noise Suppression Communication, where data is transmitted by controlling an Active Cold Load to selectively reduce emitted noise below ambient temperature levels.more » « less
-
In this work, we demonstrate that it is possible to read UHF RFID tags without a carrier. Specifically, we introduce an alternative reader design that does not emit a carrier and allows reading RFID tags intended for conventional carrier-based systems. While traditional RFID tags modulate a carrier, it is important to note that a modulation circuit used for backscatter also modulates the inherent noise of the tag circuitry, including the Johnson noise, irrespective of whether a carrier is present or not. Our Modulated Noise Communication (MNC) approach leverages recent work on Modulated Johnson Noise (MJN) and can be read by an alternative RFID reader design that enables simpler, more accessible RFID readings than a conventional backscatter reader by eliminating self-jamming obstructions. MNC is shown to support wireless transmission of data packets between 2 cm to 10 cm of separation between a standard UHF RFID tag and the proposed alternative reader for data rates of 1 bps and 2 bps.more » « less
-
The ground-based gravitational wave (GW) detectors LIGO and Virgo have enabled the birth of multi-messenger GW astronomy via the detection of GWs from merging stellar-mass black holes (BHs) and neutron stars (NSs). GW170817, the first binary NS merger detected in GWs and all bands of the electromagnetic spectrum, is an outstanding example of the impact that GW discoveries can have on multi-messenger astronomy. Yet, GW170817 is only one of the many and varied multi-messenger sources that can be unveiled using ground-based GW detectors. In this contribution, we summarize key open questions in the astrophysics of stellar-mass BHs and NSs that can be answered using current and future-generation ground-based GW detectors, and highlight the potential for new multi-messenger discoveries ahead.more » « less
-
This paper presents a step-up DC-DC converter that uses a stepwise gate-drive technique to reduce the power FET gate-drive energy by 82%, allowing positive efficiency down to an input voltage of ±0.5 mV—the lowest input voltage ever achieved for a DC-DC converter as far as we know. Below ±0.5 mV the converter automatically hibernates, reducing quiescent power consumption to just 255 pW. The converter has an efficiency of 63% at ±1 mV and 84% at ±6 mV. The input impedance is programmable from 1 Ω to 600 Ω to achieve maximum power extraction. A novel delay line circuit controls the stepwise gatedrive timing, programmable input impedance, and hibernation behavior. Bipolar input voltage is supported by using a flyback converter topology with two secondary windings. A generated power good signal enables the load when the output voltage has charged above 2.7 V and disables when the output voltage has discharged below 2.5 V. The DC-DC converter was used in a thermoelectric energy harvesting system that effectively harvests energy from small indoor temperature fluctuations of less than 1°C. Also, an analytical model with unprecedented accuracy of the stepwise gate-drive energy is presented.more » « less
-
We present the design of a passive wireless communication method that does not rely on ambient or generated RF sources. Instead, the method modulates the Johnson (thermal) noise of a resistor to transmit information bits wirelessly. By selectively connecting or disconnecting a matched resistor to an antenna, the system can achieve data rates of up to 26 bps and distances of up to 7.3 m. This communication method operates at very low power, similar to that of an RFID tag, with the advantage of not requiring a preexisting RF signal to reflect.more » « less
-
Connected devices are becoming more ubiquitous, but powering them remains a challenge. The Wireless Identification and Sensing Platform (WISP) is a fully programmable device capable of energy harvesting and backscatter communication. It can accommodate a variety of sensing modalities and operate without batteries or a wired power supply, making it a suitable device for ubiquitous computing. A new version of WISP is presented. WISP-6.0 is designed to be lowpower, modular, and enable dual energy harvesting from sources like a solar panel. Additionally, an upgraded cross-platform host application is built using the latest web technologies. Compared to its predecessor, WISP-5.1, WISP-6.0 consumes 13.62% and 6.29% less power in active accelerometer and active acknowledgment modes respectively. Furthermore, WISP-6.0 is better able to harvest RF energy collected from its antenna, with the greatest improvements at higher input powers.more » « less
-
During in-hand manipulation, robots must be able to continuously estimate the pose of the object in order to generate appropriate control actions. The performance of algorithms for pose estimation hinges on the robot's sensors being able to detect discriminative geometric object features, but previous sensing modalities are unable to make such measurements robustly. The robot's fingers can occlude the view of environment- or robot-mounted image sensors, and tactile sensors can only measure at the local areas of contact. Motivated by fingertip-embedded proximity sensors' robustness to occlusion and ability to measure beyond the local areas of contact, we present the first evaluation of proximity sensor based pose estimation for in-hand manipulation. We develop a novel two-fingered hand with fingertip-embedded optical time-of-flight proximity sensors as a testbed for pose estimation during planar in-hand manipulation. Here, the in-hand manipulation task consists of the robot moving a cylindrical object from one end of its workspace to the other. We demonstrate, with statistical significance, that proximity-sensor based pose estimation via particle filtering during in-hand manipulation: a) exhibits 50% lower average pose error than a tactile-sensor based baseline; b) empowers a model predictive controller to achieve 30% lower final positioning error compared to when using tactile-sensor based pose estimates.more » « less