skip to main content

Search for: All records

Creators/Authors contains: "Smith, Melissa C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background Quantification of gene expression from RNA-seq data is a prerequisite for transcriptome analysis such as differential gene expression analysis and gene co-expression network construction. Individual RNA-seq experiments are larger and combining multiple experiments from sequence repositories can result in datasets with thousands of samples. Processing hundreds to thousands of RNA-seq data can result in challenges related to data management, access to sufficient computational resources, navigation of high-performance computing (HPC) systems, installation of required software dependencies, and reproducibility. Processing of larger and deeper RNA-seq experiments will become more common as sequencing technology matures. Results GEMmaker, is a nf-core compliant,more »Nextflow workflow, that quantifies gene expression from small to massive RNA-seq datasets. GEMmaker ensures results are highly reproducible through the use of versioned containerized software that can be executed on a single workstation, institutional compute cluster, Kubernetes platform or the cloud. GEMmaker supports popular alignment and quantification tools providing results in raw and normalized formats. GEMmaker is unique in that it can scale to process thousands of local or remote stored samples without exceeding available data storage. Conclusions Workflows that quantify gene expression are not new, and many already address issues of portability, reusability, and scale in terms of access to CPUs. GEMmaker provides these benefits and adds the ability to scale despite low data storage infrastructure. This allows users to process hundreds to thousands of RNA-seq samples even when data storage resources are limited. GEMmaker is freely available and fully documented with step-by-step setup and execution instructions.« less
    Free, publicly-accessible full text available December 1, 2023
  2. Free, publicly-accessible full text available November 1, 2022
  3. Abstract Gene co-expression networks (GCNs) provide multiple benefits to molecular research including hypothesis generation and biomarker discovery. Transcriptome profiles serve as input for GCN construction and are derived from increasingly larger studies with samples across multiple experimental conditions, treatments, time points, genotypes, etc. Such experiments with larger numbers of variables confound discovery of true network edges, exclude edges and inhibit discovery of context (or condition) specific network edges. To demonstrate this problem, a 475-sample dataset is used to show that up to 97% of GCN edges can be misleading because correlations are false or incorrect. False and incorrect correlations canmore »occur when tests are applied without ensuring assumptions are met, and pairwise gene expression may not meet test assumptions if the expression of at least one gene in the pairwise comparison is a function of multiple confounding variables. The ‘one-size-fits-all’ approach to GCN construction is therefore problematic for large, multivariable datasets. Recently, the Knowledge Independent Network Construction toolkit has been used in multiple studies to provide a dynamic approach to GCN construction that ensures statistical tests meet assumptions and confounding variables are addressed. Additionally, it can associate experimental context for each edge of the network resulting in context-specific GCNs (csGCNs). To help researchers recognize such challenges in GCN construction, and the creation of csGCNs, we provide a review of the workflow.« less
    Free, publicly-accessible full text available January 1, 2023
  4. Speech enhancement is an essential component in robust automatic speech recognition (ASR) systems. Most speech enhancement methods are nowadays based on neural networks that use feature-mapping or mask-learning. This paper proposes a novel speech enhancement method that integrates time-domain feature mapping and mask learning into a unified framework using a Generative Adversarial Network (GAN). The proposed framework processes the received waveform and decouples speech and noise signals, which are fed into two short-time Fourier transform (STFT) convolution 1-D layers that map the waveforms to spectrograms in the complex domain. These speech and noise spectrograms are then used to compute themore »speech mask loss. The proposed method is evaluated using the TIMIT data set for seen and unseen signal-to-noise ratio conditions. It is shown that the proposed method outperforms the speech enhancement methods that use Deep Neural Network (DNN) based speech enhancement or a Speech Enhancement Generative Adversarial Network (SEGAN).« less
  5. Speech enhancement techniques that use a generative adversarial network (GAN) can effectively suppress noise while allowing models to be trained end-to-end. However, such techniques directly operate on time-domain waveforms, which are often highly-dimensional and require extensive computation. This paper proposes a novel GAN-based speech enhancement method, referred to as S-ForkGAN, that operates on log-power spectra rather than on time-domain speech waveforms, and uses a forked GAN structure to extract both speech and noise information. By operating on log-power spectra, one can seamlessly include conventional spectral subtraction techniques, and the parameter space typically has a lower dimension. The performance of S-ForkGANmore »is assessed for automatic speech recognition (ASR) using the TIMIT data set and a wide range of noise conditions. It is shown that S-ForkGAN outperforms existing GAN-based techniques and that it has a lower complexity.« less
  6. Identifying local structure in molecular simulations is of utmost importance. The most common existing approach to identify local structure is to calculate some geometrical quantity referred to as an order parameter. In simple cases order parameters are physically intuitive and trivial to develop ( e.g. , ion-pair distance), however in most cases, order parameter development becomes a much more difficult endeavor ( e.g. , crystal structure identification). Using ideas from computer vision, we adapt a specific type of neural network called a PointNet to identify local structural environments in molecular simulations. A primary challenge in applying machine learning techniques tomore »simulation is selecting the appropriate input features. This challenge is system-specific and requires significant human input and intuition. In contrast, our approach is a generic framework that requires no system-specific feature engineering and operates on the raw output of the simulations, i.e. , atomic positions. We demonstrate the method on crystal structure identification in Lennard-Jones (four different phases), water (eight different phases), and mesophase (six different phases) systems. The method achieves as high as 99.5% accuracy in crystal structure identification. The method is applicable to heterogeneous nucleation and it can even predict the crystal phases of atoms near external interfaces. We demonstrate the versatility of our approach by using our method to identify surface hydrophobicity based solely upon positions and orientations of surrounding water molecules. Our results suggest the approach will be broadly applicable to many types of local structure in simulations.« less