- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Adams, Taylor (1)
-
Aliee, Hananeh (1)
-
Allon, Samuel J. (1)
-
Andrusivova, Zaneta (1)
-
Angelidis, Ilias (1)
-
Ansari, Meshal (1)
-
Ashenberg, Orr (1)
-
Bassler, Kevin (1)
-
Benhar, Inbal (1)
-
Bergenstråhle, Joseph (1)
-
Bergenstråhle, Ludvig (1)
-
Bolt, Liam (1)
-
Braun, Emelie (1)
-
Buchanan, Justin (1)
-
Bui, Linh T. (1)
-
Butler, Jennifer K. (1)
-
Bécavin, Christophe (1)
-
Cai, Peiwen (1)
-
Callori, Steven (1)
-
Chaffin, Mark (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Although the use of airborne molecules as infochemicals is common in terrestrial plants, it has not been shown to occur in an ecologically relevant context in marine seaweeds. Like terrestrial plants, intertidal plants spend part of their lives emersed at low tide and release volatile organic compounds (VOCs) into the air when they are grazed or physiologically stressed. We hypothesized seaweeds could use airborne VOCs as infochemicals and respond to them by upregulating a keystone defensive metabolite, dimethylsulfoniopropionate (DMSP). We conducted laboratory and field experiments in whichUlva fenestratawas exposed to airborne dimethyl sulfide (DMS), a volatile antiherbivore and antioxidant metabolite released when the seaweed is grazed or physiologically stressed. In the laboratory,U. fenestrataexposed to DMS had 43–48% higher DMSP concentrations, relative to controls, 6–9 days after exposure. In the field,U. fenestrata1 m downwind of DMS emitters had 19% higher DMSP concentrations than upwind seaweeds after 11 days. To our knowledge, this is the first demonstration of a marine plant using an airborne molecule released when damaged to elicit defensive responses. Our study suggests that the ability to detect airborne compounds has evolved multiple times or before the divergence of terrestrial plants and green algae.more » « less
-
Muus, Christoph; Luecken, Malte D.; Eraslan, Gökcen; Sikkema, Lisa; Waghray, Avinash; Heimberg, Graham; Kobayashi, Yoshihiko; Vaishnav, Eeshit Dhaval; Subramanian, Ayshwarya; Smillie, Christopher; et al (, Nature Medicine)null (Ed.)
An official website of the United States government
