skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Smith, Oliver"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. NA (Ed.)
    We used isotopic and genomic data to explore the ecological and social context of cultural practices associated with the mummification of crocodiles in ancient Egypt. Ancient DNA was recovered from four mummified crocodile hatchlings held in the collections of the Peabody Museum of Natural History, Yale University. Previous genetic analyses of crocodile mummies have indicated that most mummies represent the newly resurrected taxon, Crocodylus suchus Geoffroy Saint-Hilaire, 1807. However, mitogenomic data for the Yale Peabody Museum mum- mies indicates that these specimens represent the first genomically authenticated represen- tatives of the Nile crocodile (Crocodylus niloticus Laurenti, 1768) in museum collections. We explore these findings within the broader context of modern and historical distributions of both crocodile species and the potential implications for our understanding of funerary practices involving crocodiles in ancient Egypt. 
    more » « less
  2. null (Ed.)
    Abstract Background Hi-C experiments couple DNA-DNA proximity with next-generation sequencing to yield an unbiased description of genome-wide interactions. Previous methods describing Hi-C experiments have focused on the industry-standard Illumina sequencing. With new next-generation sequencing platforms such as BGISEQ-500 becoming more widely available, protocol adaptations to fit platform-specific requirements are useful to give increased choice to researchers who routinely generate sequencing data. Results We describe an in situ Hi-C protocol adapted to be compatible with the BGISEQ-500 high-throughput sequencing platform. Using zebra finch (Taeniopygia guttata) as a biological sample, we demonstrate how Hi-C libraries can be constructed to generate informative data using the BGISEQ-500 platform, following circularization and DNA nanoball generation. Our protocol is a modification of an Illumina-compatible method, based around blunt-end ligations in library construction, using un-barcoded, distally overhanging double-stranded adapters, followed by amplification using indexed primers. The resulting libraries are ready for circularization and subsequent sequencing on the BGISEQ series of platforms and yield data similar to what can be expected using Illumina-compatible approaches. Conclusions Our straightforward modification to an Illumina-compatible in situHi-C protocol enables data generation on the BGISEQ series of platforms, thus expanding the options available for researchers who wish to utilize the powerful Hi-C techniques in their research. 
    more » « less