Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The U.S. bioeconomy has been estimated to be $950 billion and growing [1]. Sustaining this growth requires a skilled workforce who can manufacture goods developed through biotechnology. Scaling the biotechnology workforce to the needed level requires the ability to measure its size. The National Center for Education Statistics (NCES) is the federal agency responsible for gathering education data in the U.S. Colleges that receive federal funding are mandated by law to report data every year to the NCES. Given the comprehensive nature of these data, we sought to determine whether it could be used to measure the number of certificates and degrees in biotechnology awarded by two-year colleges. An unexpected challenge was the requirement by the NCES data retrieval page for Classification of Instructional Program (CIP) codes and the inconsistent use of CIP codes by college biotechnology programs. We were able to circumvent these challenges by using data from the InnovATEBIO National Center for Biotechnology Education. InnovATEBIO data allowed us to identify two-year colleges with biotechnology programs and use those results to learn which CIP codes were being assigned. Knowing the CIP codes and their use in different states supplied the information we needed to obtain certificate and degree completion data from the NCES. These data provided insights into the changing numbers and demographics of biotech students during the past twenty years. Not only are these data important for understanding trends in biotechnology education, they are imperative for guiding the initiation, development, and sustainability of biotechnology education programs at two-year colleges.more » « lessFree, publicly-accessible full text available January 24, 2026
-
Undergraduate research experiences are increasingly important in biology education with efforts underway to provide more projects by embedded them in a course. The shift to online learning at the beginning of the pandemic presented a challenge. How could biology instructors provide research experiences to students who were unable to attend in-person labs? During the 2021 ISMB (Intelligent Systems for Molecular Biology) iCn3D Hackathon–Collaborative Tools for Protein Analysis–we learned about new capabilities in iCn3D for analyzing the interactions between amino acids in the paratopes of antibodies with amino acids in the epitopes of antigens and predicting the effects of mutations on binding. Additionally, new sequence alignment tools in iCn3D support aligning protein sequences with sequences in structure models. We used these methods to create a new undergraduate research project, that students could perform online as part of a course, by combining the use of new features in iCn3D with analysis tools in NextStrain, and a data set of anti-SARS-CoV-2 antibodies. We present results from an example project to illustrate how students would investigate the likelihood of SARS-CoV-2 variants escaping from commercial antibodies and use chemical interaction data to support their hypotheses. We also demonstrate that online tools (iCn3D, NextStrain, and the NCBI databases) can be used to carry out the necessary steps and that this work satisfies the requirements for course-based undergraduate research. This project reinforces major concepts in undergraduate biology–evolution and the relationship between the sequence of a protein, its three-dimensional structure, and its function.more » « less
-
Kazarinoff, Peter D. (Ed.)Biotech-Careers.org is a comprehensive career information resource used in college and high school classrooms nationwide. The site combines education materials and job search capabilities with an extensive employer database. We describe four paths for exploring Biotech-Careers.org–People, Places, Things, and Jobs and describe the impacts of using the site on multiple cohorts of college students. The students reported an increased interest in pursuing biotechnology-related careers and an increase in cognitive factors (awareness, belonging, self-efficacy, and identity) known to be important in career choice.more » « less
-
Life science organizations are increasingly using hackathons to bring communities together to tackle shared problems, teach skills, and develop new resources. In this study, we explored the potential benefits of hackathons for the biotechnology workforce education community by organizing two hackathons centered around developing research projects in antibody engineering—a practice widely employed in the biotechnology industry but uncommon in biotechnology education. To integrate antibody engineering into courses, instructors need protocols for both computational and laboratory methods. Developing and testing these protocols provides rich opportunities for undergraduate research, allowing students to learn industry-relevant skills and contribute to creating materials for the community. During the hackathons, teams of faculty, students, and industry partners collaborated to generate several new research projects. Each hackathon was only a few days, yet student participants reported benefits similar to those attributed to traditional undergraduate research experiences. We share lessons learned from these hackathons and provide insights for the workforce education community for hosting similar events.more » « less
-
Immuno-biotechnology is one of the fastest growing areas in the field of biotechnology. Digital World Biology's Biotech-Careers.org database of biotechnology employers (6800) has nearly 700 organizations that are involved with immunology in some way. With the advent of next generation DNA sequencing, and other technologies, immuno-biotechnology has significantly increased the use of computing technologies to decipher the meaning of large datasets and predict interactions between immune receptors (antibodies / T-Cell receptors / MHC) and their targets. The use of new technologies like immune-profiling -where large numbers of immune receptors are sequenced en masse - and targeted cancer therapies - where researchers create, engineer, and grow modified T cells to attack tumors -are leading to job growth and demands for new skills and knowledge in biomanufacturing, quality systems, immuno-bioinformatics, and cancer biology. In response to these new demands, Shoreline Community College (Shoreline, WA) has begun developing an immuno-biotechnology certificate. Part of this certificate includes a five-week course (30 hours hands-on computer lab) on immuno-bioinformatics. The immuno-bioinformatics course includes exercises in immune profiling, vaccine development, and operating bioinformatics programs using a command line interface. In immune profiling, students explore T-cell receptor data-sets from early stage breast cancer samples using Adaptive Biotechnologies (Seattle, WA) immunoSEQ Analyzer public server to learn how T-cells differ between normal tissue, blood, and tumors. Next, they use the IEDB (Immune Epitope Database) in conjunction with Molecule World (Digital World Biology) to predict antigens from sequences and verify the results to learn the differences between continuous and discontinuous epitopes that are recognized by T-cell receptors and antibodies. Finally, to get hands-on experience with bioinformatics programs, students will use cloud computing (CyVerse) and IgBLAST (NCBI) to explore data from an immune profiling experiment.more » « less
An official website of the United States government

Full Text Available