skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Smith, Walker O."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The genus Phaeocystis is globally distributed, with blooms commonly occurring on continental shelves. This unusual phytoplankter has two major morphologies: solitary cells and cells embedded in a gelatinous matrix. Only colonies form blooms. Their large size (commonly 2 mm but up to 3 cm) and mucilaginous envelope allow the colonies to escape predation, but data are inconsistent as to whether colonies are grazed. Cultured Phaeocystis can also inhibit the growth of co-occurring phytoplankton or the feeding of potential grazers. Colonies and solitary cells use nitrate as a nitrogen source, although solitary cells can also grow on ammonium. Phaeocystis colonies might be a major contributor to carbon flux to depth, but in most cases, colonies are rapidly remineralized in the upper 300 m. The occurrence of large Phaeocystis blooms is often associated with environments with low and highly variable light and high nitrate levels, with Phaeocystis antarctica blooms being linked additionally to high iron availability. Emerging results indicate that different clones of Phaeocystis have substantial genetic plasticity, which may explain its appearance in a variety of environments, Given the evidence of Phaeocystis appearing in new systems, this trend will likely continue in the near future.

    Expected final online publication date for the Annual Review of Marine Science, Volume 16 is January 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

     
    more » « less
    Free, publicly-accessible full text available January 3, 2025
  2. Estimates of primary production represent the input of carbon into food webs, as well as the initial step in the biological pump. For the past 60 years, much of the productivity information has been obtained using measurements of 14 C-bicarbonate removal during simulated in situ incubations. However, such measurements often do not reflect the complexity of the environment, and also suffer from uncertainties, biases and limitations. A vertically resolved bio-optical model has been used to estimate productivity based on profiles commonly assessed in oceanographic investigations, but comparisons with simultaneous measurements of 14 C-uptake are limited. We conducted three cruises off the coast of New England that included sampling continental shelf waters, the shelf-break region, and deeper waters at scales of 7 km, all of which had productivity estimated by a vertically resolved productivity model as well as by traditional 14 C-uptake measurements using simulated in situ techniques. We found that the vertically resolved bio-optical model gave results that appear to be more robust and resolved productivity at smaller vertical and horizontal scales, and seem less biased by some of the uncertainties in 14 C-uptake measurements. Both estimates suggest that the New England waters are highly productive due to a variety of biological and physical processes occurring at different times of the year, but there was no consistent stimulation at the shelf break over the time scales of these estimates. 
    more » « less
  3. null (Ed.)