Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Effective file system testing relies on coverage to detect bugs and enhance reliability. We analyzed real file system bugs and found a weak correlation between code coverage, the most commonly used metric, and test effectiveness; many bugs were in covered code but remained undetected. Our study also showed that covering diverse file system inputs and outputs—system call arguments and return values—can be key to detecting the majority of observed bugs. We present input coverage and output coverage as new metrics for evaluating and improving file system testing, and have developed the IOCov framework for computing these metrics. Unlike existing system call tracers, IOCov computes coverage using only the calls relevant to testing, excluding unrelated ones that should not be counted. To demonstrate IOCov’s utility, we used it to extend the existing testing tool CrashMonkey into CM-IOCov, which achieves broader input coverage and more thorough detection of crash consistency bugs. Our experimental evaluation shows that IOCov com- putes input and output coverage accurately with minimal overhead. IOCov is applicable to different types of file system testing and can provide insights for improvement as well as identify untested cases based on coverage results. Moreover, the bugs found exclusively by CM-IOCov are 2.1 and 12.9 times more than those found exclusively by CrashMonkey on the 6.12 and 5.6 kernels, respectively, demonstrating the effectiveness of the IOCov-based coverage approach.more » « lessFree, publicly-accessible full text available September 8, 2026
-
We present distributed distance-based control (DDC), a novel approach for controlling a multi-agent system, such that it achieves a desired formation, in a resource-constrained setting. Our controller is fully distributed and only requires local state-estimation and scalar measurements of inter-agent distances. It does not require an external localization system or inter-agent exchange of state information. Our approach uses spatial- predictive control (SPC), to optimize a cost function given strictly in terms of inter-agent distances and the distance to the target location. In DDC, each agent continuously learns and updates a very abstract model of the actual system, in the form of a dictionary of three independent key-value pairs (~s, d), where d is the partial derivative of the distance measurements along a spatial direction ~s. This is sufficient for an agent to choose the best next action. We validate our approach by using DDC to control a collection of Crazyflie drones to achieve formation flight and reach a target while maintaining flock formation.more » « less
-
The Simplex Architecture is a runtime assurance framework where control authority may switch from an unverified and potentially unsafe advanced controller to a backup baseline controller in order to maintain the safety of an autonomous cyber-physical system. In this work, we show that runtime checks can replace the requirement to statically verify safety of the baseline controller. This is important as there are many powerful control techniques, such as model-predictive control and neural network controllers, that work well in practice but are difficult to statically verify. Since the method does not use internal information about the advanced or baseline controller, we call the approach the Black-Box Simplex Architecture. We prove the architecture is safe and present two case studies where (i) modelpredictive control provides safe multi-robot coordination, and (ii) neural networks provably prevent collisions in groups of F-16 aircraft, despite the controllers occasionally outputting unsafe commands. We further show how to safely blend commands from the advanced and baseline controllers in multiagent systems, reducing the performance impact when switching is necessary to preserve safety.more » « less
-
We present ResilienC, a framework for resilient control of Cyber- Physical Systems subject to STL-based requirements. ResilienC uti- lizes a recently developed formalism for specifying CPS resiliency in terms of sets of (rec,dur) real-valued pairs, where rec repre- sents the system’s capability to rapidly recover from a property violation (recoverability), and dur is reflective of its ability to avoid violations post-recovery (durability). We define the resilient STL control problem as one of multi-objective optimization, where the recoverability and durability of the desired STL specification are maximized. When neither objective is prioritized over the other, the solution to the problem is a set of Pareto-optimal system trajectories. We present a precise solution method to the resilient STL control problem using a mixed-integer linear programming encoding and an a posteriori n-constraint approach for efficiently retrieving the complete set of optimally resilient solutions. In ResilienC, at each time-step, the optimal control action selected from the set of Pareto- optimal solutions by a Decision Maker strategy realizes a form of Model Predictive Control. We demonstrate the practical utility of the ResilienC framework on two significant case studies: autonomous vehicle lane keeping and deadline-driven, multi-region package delivery.more » « less
-
We introduce Spatial Predictive Control (SPC), a technique for solving the following problem: given a collection of robotic agents with black-box positional low-level controllers (PLLCs) and a mission-specific distributed cost function, how can a distributed controller achieve and maintain cost-function minimization without a plant model and only positional observations of the environment? Our fully distributed SPC controller is based strictly on the position of the agent itself and on those of its neighboring agents. This information is used in every time step to compute the gradient of the cost function and to perform a spatial look-ahead to predict the best next target position for the PLLC. Using a simulation environment, we show that SPC outperforms Potential Field Controllers, a related class of controllers, on the drone flocking problem. We also show that SPC works on real hardware, and is therefore able to cope with the potential sim-to-real transfer gap. We demonstrate its performance using as many as 16 Crazyflie 2.1 drones in a number of scenarios, including obstacle avoidance.more » « less
-
Bogomolov, Sergiy; Parker, David (Ed.)Resiliency is the ability to quickly recover from a violation and avoid future violations for as long as possible. Such a property is of fundamental importance for Cyber-Physical Systems (CPS), and yet, to date, there is no widely agreed-upon formal treatment of CPS resiliency. We present an STL-based framework for reasoning about resiliency in CPS in which resiliency has a syntactic characterization in the form of an STL-based Resiliency Specification (SRS). Given an arbitrary STL formula φ, time bounds α and β, the SRS of φ, Rα,β (φ), is the STL formula ¬φU[0,α]G[0,β)φ, specifying that recovery from a violation of φ occur within time α (recoverability), and subsequently that φ be maintained for duration β (durability). These R-expressions, which are atoms in our SRS logic, can be combined using STL operators, allowing one to express composite resiliency specifications, e.g., multiple SRSs must hold simultaneously, or the system must eventually be resilient. We define a quantitative semantics for SRSs in the form of a Resilience Satisfaction Value (ReSV) function r and prove its soundness and completeness w.r.t. STL’s Boolean semantics. The r-value for Rα,β (φ) atoms is a singleton set containing a pair quantifying recoverability and durability. The r-value for a composite SRS formula results in a set of non-dominated recoverability-durability pairs, given that the ReSVs of subformulas might not be directly comparable (e.g., one subformula has superior durability but worse recoverability than another). To the best of our knowledge, this is the first multi-dimensional quantitative semantics for an STL-based logic. Two case studies demonstrate the practical utility of our approach. https://doi.org/10.1007/978-3-031-15839-1_7more » « less
-
he Simplex Architecture is a runtime assurance framework where control authority may switch from an unverified and potentially unsafe advanced controller to a backup baseline controller in order to maintain the safety of an autonomous cyber-physical system. In this work, we show that runtime checks can replace the requirement to statically verify safety of the baseline controller. This is important as there are many powerful control techniques, such as model-predictive control and neural network controllers, that work well in practice but are difficult to statically verify. Since the method does not use internal information about the advanced or baseline controller, we call the approach the Black-Box Simplex Architecture. We prove the architecture is safe and present two case studies where (i) model-predictive control provides safe multi-robot coordination, and (ii) neural networks provably prevent collisions in groups of F-16 aircraft, despite the controllers occasionally outputting unsafe commands.more » « less
-
Can NLP assist in building formal models for verifying complex systems? We study this challenge in the context of parsing Network File System (NFS) specifications. We define a semantic-dependency problem over SpecIR, a representation language we introduce to model sentences appearing in NFS specification documents (RFCs) as semantic dependency structures, and present an annotated dataset of 1,198 sentences. We develop and evaluate semantic-dependency parsing systems for this problem. Evaluations show that even when using a state-of-the-art language model, there is significant room for improvement, with the best models achieving an F1 score of only 60.5 and 33.3 in the named-entity-recognition and dependency-link-prediction sub-tasks, respectively. We also release additional unlabeled data and other domain-related texts. Experiments show that these additional resources increase the F1 measure when used for simple domain-adaption and transfer-learning-based approaches, suggesting fruitful directions for further research.more » « less
An official website of the United States government

Full Text Available