Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A<sc>bstract</sc> We study Krylov complexity in various models of quantum field theory: free massive bosons and fermions on flat space and on spheres, holographic models, and lattice models with a UV-cutoff. In certain cases, we observe asymptotic behavior in Lanczos coefficients that extends beyond the previously observed universality. We confirm that, in all cases, the exponential growth of Krylov complexity satisfies the conjectured inequality, which generalizes the Maldacena-Shenker-Stanford bound on chaos. We discuss the temperature dependence of Lanczos coefficients and note that the relationship between the growth of Lanczos coefficients and chaos may only hold for the sufficiently late, truly asymptotic regime, governed by physics at the UV cutoff. Contrary to previous suggestions, we demonstrate scenarios in which Krylov complexity in quantum field theory behaves qualitatively differently from holographic complexity.more » « less
-
A bstract It has long been known that weakly nonlinear field theories can have a late-time stationary state that is not the thermal state, but a wave turbulent state with a far-from-equilibrium cascade of energy. We go beyond the existence of the wave turbulent state, studying fluctuations about the wave turbulent state. Specifically, we take a classical field theory with an arbitrary quartic interaction and add dissipation and Gaussian-random forcing. Employing the path integral relation between stochastic classical field theories and quantum field theories, we give a prescription, in terms of Feynman diagrams, for computing correlation functions in this system. We explicitly compute the two-point and four-point functions of the field to next-to-leading order in the coupling. Through an appropriate choice of forcing and dissipation, these correspond to correlation functions in the wave turbulent state. In particular, we derive the kinetic equation to next-to-leading order.more » « less
-
We consider a UV-complete field-theoretic model in general dimensions, including d=2+1, which consists of two copies of thelong-range vector models, with O(m) and O(N-m) global symmetry groups,perturbed by double-trace operators.Using conformal perturbation theorywe find weakly-coupled IR fixed points for N\geq 6 N ≥ 6 that reveal a spontaneousbreaking of global symmetry. Namely, at finite temperature the lower rank group is broken,with the pattern persisting at all temperatures due to scale-invariance. We provide evidence that the models in question are unitary and invariant under full conformal symmetry. Furthermore, we show that this model exhibits a continuous family of weakly interacting field theories at finite N.more » « less
-
null (Ed.)A bstract We use the background field method to systematically derive CFT data for the critical ϕ 6 vector model in three dimensions, and the Gross-Neveu model in dimensions 2 ≤ d ≤ 4. Specifically, we calculate the OPE coefficients and anomalous dimensions of various operators, up to next-to-leading order in the 1/ N expansion.more » « less