Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Concentrations of urinary neopterin, but not suPAR, positively correlate with age in rhesus macaquesIdentifying biomarkers of age-related changes in immune system functioning that can be measured non-invasively is a significant step in progressing research on immunosenescence and inflammaging in free-ranging and wild animal populations. In the present study, we aimed to investigate the suitability of two urinary compounds, neopterin and suPAR, as biomarkers of age-related changes in immune activation and inflammation in a free-ranging rhesus macaque ( Macaca mulatta ) population. We also investigated age-associated variation in gene transcription from blood samples to understand the underlying proximate mechanisms that drive age-related changes in urinary neopterin or suPAR. Neopterin was significantly positively correlated with age, and had a moderate within-individual repeatability, indicating it is applicable as a biomarker of age-related changes. The age-related changes in urinary neopterin are not apparently driven by an age-related increase in the primary signaler of neopterin, IFN-y, but may be driven instead by an age-related increase in both CD14+ and CD14− monocytes. suPAR was not correlated with age, and had low repeatability within-individuals, indicating that it is likely better suited to measure acute inflammation rather than chronic age-related increases in inflammation (i.e., “inflammaging”). Neopterin and suPAR had a correlation of 25%, indicating that they likely often signal different processes,more »Free, publicly-accessible full text available October 28, 2023
-
Free, publicly-accessible full text available November 1, 2023
-
Abstract Neopterin, a product of activated white blood cells, is a marker of nonspecific inflammation that can capture variation in immune investment or disease-related immune activity and can be collected noninvasively in urine. Mounting studies in wildlife point to lifetime patterns in neopterin related to immune development, aging, and certain diseases, but rarely are studies able to assess whether neopterin can capture multiple concurrent dimensions of health and disease in a single system. We assessed the relationship between urinary neopterin stored on filter paper and multiple metrics of health and disease in wild geladas (
Theropithecus gelada ), primates endemic to the Ethiopian highlands. We tested whether neopterin captures age-related variation in inflammation arising from developing immunity in infancy and chronic inflammation in old age, inflammation related to intramuscular tapeworm infection, helminth-induced anti-inflammatory immunomodulation, and perturbations in the gastrointestinal microbiome. We found that neopterin had a U-shaped relationship with age, no association with larval tapeworm infection, a negative relationship with metrics related to gastrointestinal helminth infection, and a negative relationship with microbial diversity. Together with growing research on neopterin and specific diseases, our results demonstrate that urinary neopterin can be a powerful tool for assessing multiple dimensions of health and disease inmore » -
Free, publicly-accessible full text available December 1, 2023
-
Abstract Background Adaptive shifts in gut microbiome composition are one route by which animals adapt to seasonal changes in food availability and diet. However, outside of dietary shifts, other potential environmental drivers of gut microbial composition have rarely been investigated, particularly in organisms living in their natural environments. Results Here, we generated the largest wild nonhuman primate gut microbiome dataset to date to identify the environmental drivers of gut microbial diversity and function in 758 samples collected from wild Ethiopian geladas ( Theropithecus gelada ). Because geladas live in a cold, high-altitude environment and have a low-quality grass-based diet, they face extreme thermoregulatory and energetic constraints. We tested how proxies of food availability (rainfall) and thermoregulatory stress (temperature) predicted gut microbiome composition of geladas. The gelada gut microbiome composition covaried with rainfall and temperature in a pattern that suggests distinct responses to dietary and thermoregulatory challenges. Microbial changes were driven by differences in the main components of the diet across seasons: in rainier periods, the gut was dominated by cellulolytic/fermentative bacteria that specialized in digesting grass, while during dry periods the gut was dominated by bacteria that break down starches found in underground plant parts. Temperature had a comparatively smaller,more »
-
The cost–benefit ratio of group living is thought to vary with group size: individuals in ‘optimally sized’ groups should have higher fitness than individuals in groups that are either too large or too small. However, the relationship between group size and individual fitness has been difficult to establish for long-lived species where the number of groups studied is typically quite low. Here, we present evidence for optimal group size that maximizes female fitness in a population of geladas ( Theropithecus gelada ). Drawing on 14 years of demographic data, we found that females in small groups experienced the highest death rates, while females in mid-sized groups exhibited the highest reproductive performance. This group size effect on female reproductive performance was largely explained by variation in infant mortality (and, in particular, by infanticide from immigrant males) but not by variation in reproductive rates. Taken together, females in mid-sized groups are projected to attain optimal fitness due to conspecific infanticide and, potentially, predation. Our findings provide insight into how and why group size shapes fitness in long-lived species.
-
Brain structure is predicted by social network size but not other key social attributes in free-ranging monkeys.Free, publicly-accessible full text available April 15, 2023
-
Free, publicly-accessible full text available May 1, 2023