skip to main content

Search for: All records

Creators/Authors contains: "Sobel, James M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Seasonal timing traits are commonly under recurrent, spatially variable selection, and are therefore predicted to exhibit clinal variation. Temperate perennial plants often require vernalization to prompt growth and reproduction; however, little is known about whether vernalization requirements change across the range of a broadly distributed species. We performed a critical vernalization duration study inMimulus ringens, coupled with population genomic analysis. Plants from eight populations spanning the latitudinal range were exposed to varying durations of 4°C vernalization between 0 and 56 days, and flowering response was assessed. RADSeq was also performed to generate 1179 polymorphic SNPs, which were used to examine population structure. We found unexpected life history variation, with some populations lacking vernalization requirement. Population genomic analyses show that these life history variants are highly divergent from perennials, potentially revealing a cryptic species. For perennial populations, minimum vernalization time was surprisingly consistent. However, once vernalized, northern populations flowered almost 3 weeks faster than southern. Furthermore, southern populations exhibited sensitivity to vernalization times beyond flowering competency, suggesting an ability to respond adaptively to different lengths of winter.Mimulus ringens, therefore, reveals evidence of clinal variation, and provides opportunities for future studies addressing mechanistic and ecological hypotheses both within and between incipient species.

    more » « less
  2. Abstract

    Many forms of reproductive isolation contribute to speciation, and early‐acting barriers may be especially important, because they have the first opportunity to limit gene flow. Ecogeographic isolation occurs when intrinsic traits of taxa contribute to disjunct geographic distributions, reducing the frequency of intertaxon mating. Characterizing this form of isolation requires knowledge of both the geographic arrangement of suitable habitats in nature and the identification of phenotypes involved in shaping geographic distributions. InMimulus aurantiacus,red‐ and yellow‐flowered ecotypes are incompletely isolated by divergent selection exerted by different pollinators. However, these emerging taxa are largely isolated spatially, with a hybrid zone occurring along a narrow region of contact. In order to assess whether responses to abiotic conditions contribute to the parapatric distribution of ecotypes, we measured a series of ecophysiological traits from populations along a transect, including drought sensitivity, leaf area and the concentrations of vegetative flavonoids. In contrast to the abrupt transitions in floral phenotypes, we found that ecophysiological traits exhibited a continuous geographic transition that largely mirrors variation in climatological variables. These traits may impede gene flow across a continuous environmental gradient, but they would be unlikely to result in ecotypic divergence alone. Nevertheless, we found a genetic correlation between vegetative and floral traits, providing a potential link between the two forms of isolation. Although neither barrier appears sufficient to cause divergence on its own, the combined impacts of local adaptation to abiotic conditions and regional adaptation to pollinators may interact to drive discontinuous variation in the face of gene flow in this system.

    more » « less
  3. Abstract

    A major goal of speciation research is to reveal the genomic signatures that accompany the speciation process. Genome scans are routinely used to explore genome‐wide variation and identify highly differentiated loci that may contribute to ecological divergence, but they do not incorporate spatial, phenotypic or environmental data that might enhance outlier detection. Geographic cline analysis provides a potential framework for integrating diverse forms of data in a spatially explicit framework, but has not been used to study genome‐wide patterns of divergence. Aided by a first‐draft genome assembly, we combined anFCTscan and geographic cline analysis to characterize patterns of genome‐wide divergence between divergent pollination ecotypes ofMimulus aurantiacus.FCTanalysis of 58 872SNPs generated viaRAD‐seq revealed little ecotypic differentiation (meanFCT = 0.041), although a small number of loci were moderately‐to‐highly diverged. Consistent with our previous results from the geneMaMyb2, which contributes to differences in flower colour, 130 loci have cline shapes that recapitulate the spatial pattern of trait divergence, suggesting that they may reside in or near the genomic regions that contribute to pollinator isolation. In the narrow hybrid zone between the ecotypes, extensive admixture among individuals and low linkage disequilibrium between markers indicate that most outlier loci are scattered throughout the genome, rather than being restricted to one or a few divergent regions. In addition to revealing the genomic consequences of ecological divergence in this system, we discuss how geographic cline analysis is a powerful but under‐utilized framework for studying genome‐wide patterns of divergence.

    more » « less