- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
00000040000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Shimizu, Linda S. (4)
-
Soberats, Bartolome (4)
-
Bäumer, Nils (2)
-
Fernández, Gustavo (2)
-
Frontera, Antonio (2)
-
Gomila, Rosa Maria (2)
-
Greytak, Andrew B. (2)
-
Helmers, Ingo (2)
-
Hossain, Muhammad Saddam (2)
-
Islam, Md Faizul (2)
-
Prakash, Rahul (2)
-
Rubert, Llorenç (2)
-
Smith, Mark D. (2)
-
Wesarg, Paul (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Helmers, Ingo ; Hossain, Muhammad Saddam ; Bäumer, Nils ; Wesarg, Paul ; Soberats, Bartolome ; Shimizu, Linda S. ; Fernández, Gustavo ( , Angewandte Chemie)
-
Rubert, Llorenç ; Islam, Md Faizul ; Greytak, Andrew B. ; Prakash, Rahul ; Smith, Mark D. ; Gomila, Rosa Maria ; Frontera, Antonio ; Shimizu, Linda S. ; Soberats, Bartolome ( , Angewandte Chemie)
Abstract We report on a dendronized bis‐urea macrocycle
1 self‐assembling via a cooperative mechanism into two‐dimensional (2D) nanosheets formed solely by alternated urea‐urea hydrogen bonding interactions. The pure macrocycle self‐assembles in bulk into one‐dimensional liquid‐crystalline columnar phases. In contrast, its self‐assembly mode drastically changes in CHCl3or tetrachloroethane, leading to 2D hydrogen‐bonded networks. Theoretical calculations, complemented by previously reported crystalline structures, indicate that the 2D assembly is formed by a brick‐like hydrogen bonding pattern between bis‐urea macrocycles. This assembly is promoted by the swelling of the trisdodecyloxyphenyl groups upon solvation, which frustrates, due to steric effects, the formation of the thermodynamically more stable columnar macrocycle stacks. This work proposes a new design strategy to access 2D supramolecular polymers by means of a single non‐covalent interaction motif, which is of great interest for materials development. -
Rubert, Llorenç ; Islam, Md Faizul ; Greytak, Andrew B. ; Prakash, Rahul ; Smith, Mark D. ; Gomila, Rosa Maria ; Frontera, Antonio ; Shimizu, Linda S. ; Soberats, Bartolome ( , Angewandte Chemie International Edition)
Abstract We report on a dendronized bis‐urea macrocycle
1 self‐assembling via a cooperative mechanism into two‐dimensional (2D) nanosheets formed solely by alternated urea‐urea hydrogen bonding interactions. The pure macrocycle self‐assembles in bulk into one‐dimensional liquid‐crystalline columnar phases. In contrast, its self‐assembly mode drastically changes in CHCl3or tetrachloroethane, leading to 2D hydrogen‐bonded networks. Theoretical calculations, complemented by previously reported crystalline structures, indicate that the 2D assembly is formed by a brick‐like hydrogen bonding pattern between bis‐urea macrocycles. This assembly is promoted by the swelling of the trisdodecyloxyphenyl groups upon solvation, which frustrates, due to steric effects, the formation of the thermodynamically more stable columnar macrocycle stacks. This work proposes a new design strategy to access 2D supramolecular polymers by means of a single non‐covalent interaction motif, which is of great interest for materials development.