skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sokol, Piotr"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    In recent years, the efficacy of using artificial recurrent neural networks to model cortical dynamics has been a topic of interest. Gated recurrent units (GRUs) are specialized memory elements for building these recurrent neural networks. Despite their incredible success in natural language, speech, video processing, and extracting dynamics underlying neural data, little is understood about the specific dynamics representable in a GRU network, and how these dynamics play a part in performance and generalization. As a result, it is both difficult to know a priori how successful a GRU network will perform on a given task, and also their capacity to mimic the underlying behavior of their biological counterparts. Using a continuous time analysis, we gain intuition on the inner workings of GRU networks. We restrict our presentation to low dimensions, allowing for a comprehensive visualization. We found a surprisingly rich repertoire of dynamical features that includes stable limit cycles (nonlinear oscillations), multi-stable dynamics with various topologies, and homoclinic bifurcations. At the same time GRU networks are limited in their inability to produce continuous attractors, which are hypothesized to exist in biological neural networks. We contextualize the usefulness of different kinds of observed dynamics and support our claims experimentally. 
    more » « less