Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
SN 2021adxl is a slowly evolving, luminous, Type IIn supernova with asymmetric emission line profiles, similar to the well-studied SN 2010jl. We present extensive optical, near-ultraviolet, and near-infrared photometry and spectroscopy covering ∼1.5 years post discovery. SN 2021adxl occurred in an unusual environment, atop a vigorously star-forming region that is offset from its host galaxy core. The appearance of Lyαand O II, as well as the compact core, would classify the host of SN 2021adxl as a “Blueberry” galaxy, analogous to higher redshift, low-metallicity, star-forming dwarf “Green Pea” galaxies. Using several abundance indicators, we find a metallicity of the explosion environment of only ∼0.1 Z⊙, the lowest reported metallicity for a Type IIn SN environment. SN 2021adxl reaches a peak magnitude ofMr ≈ −20.2 mag and since discovery, SN 2021adxl has faded by only ∼4 magnitudes in therband with a cumulative radiated energy of ∼1.5 × 1050erg over 18 months. SN 2021adxl shows strong signs of interaction with a complex circumstellar medium, seen by the detection of X-rays, revealed by the detection of coronal emission lines, and through multi-component hydrogen and helium profiles. In order to further understand this interaction, we model the Hαprofile using a Monte Carlo electron scattering code. The blueshifted high-velocity component is consistent with emission from a radially thin spherical shell resulting in the broad emission components due to electron scattering. Using the velocity evolution of this emitting shell, we find that the SN ejecta collide with circumstellar material of at least ∼5 M⊙assuming a steady-state mass-loss rate of ∼4 − 6 × 10−3M⊙yr−1for the first ∼200 days of evolution. SN 2021adxl was last observed to be slowly declining at ∼0.01 mag d−1, and if this trend continues, SN 2021adxl will remain observable after its current solar conjunction. Continuing the observations of SN 2021adxl may reveal signatures of dust formation or an infrared excess, similar to that seen for SN 2010jl.more » « lessFree, publicly-accessible full text available October 1, 2025
-
SN 2020zbf is a hydrogen-poor superluminous supernova (SLSN) atz = 0.1947 that shows conspicuous C IIfeatures at early times, in contrast to the majority of H-poor SLSNe. Its peak magnitude isMg = −21.2 mag and its rise time (≲26.4 days from first light) places SN 2020zbf among the fastest rising type I SLSNe. We used spectra taken from ultraviolet (UV) to near-infrared wavelengths to identify spectral features. We paid particular attention to the C IIlines as they present distinctive characteristics when compared to other events. We also analyzed UV and optical photometric data and modeled the light curves considering three different powering mechanisms: radioactive decay of56Ni, magnetar spin-down, and circumstellar medium (CSM) interaction. The spectra of SN 2020zbf match the model spectra of a C-rich low-mass magnetar-powered supernova model well. This is consistent with our light curve modeling, which supports a magnetar-powered event with an ejecta massMej = 1.5 M⊙. However, we cannot discard the CSM-interaction model as it may also reproduce the observed features. The interaction with H-poor, carbon-oxygen CSM near peak light could explain the presence of C IIemission lines. A short plateau in the light curve around 35–45 days after peak, in combination with the presence of an emission line at 6580 Å, can also be interpreted as being due to a late interaction with an extended H-rich CSM. Both the magnetar and CSM-interaction models of SN 2020zbf indicate that the progenitor mass at the time of explosion is between 2 and 5M⊙. Modeling the spectral energy distribution of the host galaxy reveals a host mass of 108.7M⊙, a star formation rate of 0.24−0.12+0.41M⊙yr−1, and a metallicity of ∼0.4Z⊙.more » « lessFree, publicly-accessible full text available May 1, 2025
-
We present linear polarimetry for seven hydrogen-poor superluminous supernovae (SLSNe-I) of which only one has previously published polarimetric data. The best-studied event is SN 2017gci, for which we present two epochs of spectropolarimetry at +3 d and +29 d post-peak in rest frame, accompanied by four epochs of imaging polarimetry up to +108 d. The spectropolarimetry at +3 d shows increasing polarisation degree P towards the redder wavelengths and exhibits signs of axial symmetry, but at +29 d, P ∼ 0 throughout the spectrum, implying that the photosphere of SN 2017gci evolved from a slightly aspherical configuration to a more spherical one in the first month post-peak. However, an increase of P to ∼0.5% at ∼ + 55 d accompanied by a different orientation of the axial symmetry compared to +3 d implies the presence of additional sources of polarisation at this phase. The increase in polarisation is possibly caused by interaction with circumstellar matter (CSM), as already suggested by a knee in the light curve and a possible detection of broad H α emission at the same phase. We also analysed the sample of all 16 SLSNe-I with polarimetric measurements to date. The data taken during the early spectroscopic phase show consistently low polarisation, indicating at least nearly spherical photospheres. No clear relation between the polarimetry and spectral phase was seen when the spectra resemble Type Ic SNe during the photospheric and nebular phases. The light-curve decline rate, which spans a factor of eight, also shows no clear relation with the polarisation properties. While only slow-evolving SLSNe-I have shown non-zero polarisation, the fast-evolving ones have not been observed at sufficiently late times to conclude that none of them exhibit changing P . However, the four SLSNe-I with increasing polarisation degree also have irregular light-curve declines. For up to half of them, the photometric, spectroscopic, and polarimetric properties are affected by CSM interaction. As such, CSM interaction clearly plays an important role in understanding the polarimetric evolution of SLSNe-I.more » « less
-
Obtaining spectroscopic observations of the progenitors of core-collapse supernovae is often unfeasible, due to an inherent lack of knowledge as to what stars experience supernovae and when they will explode. In this Letter we present photometric and spectroscopic observations of the progenitor activity of SN 2023fyq before the He-rich progenitor explodes as a Type Ibn supernova. The progenitor of SN 2023fyq shows an exponential rise in flux prior to core collapse. Complex He Iemission line features are observed in the progenitor spectra, with a P Cygni-like profile, as well as an evolving broad base with velocities of the order of 10 000 km s−1. The luminosity and evolution of SN 2023fyq is consistent with a Type Ibn, reaching a peakr-band magnitude of −18.8 mag, although there is some uncertainty regarding the distance to the host, NGC 4388, which is located in the Virgo cluster. We present additional evidence of asymmetric He-rich material being present both prior to and after the explosion of SN 2023fyq, which suggests that this material survived the ejecta interaction. Broad [O I], C I, and the Ca IItriplet lines are observed at late phases, confirming that SN 2023fyq was a genuine supernova, rather than a non-terminal interacting transient. SN 2023fyq provides insight into the final moments of a massive star’s life, demonstrating that the progenitor is likely highly unstable before core collapse.more » « less
-
Abstract We present the discovery and analysis of SN 2022oqm, a Type Ic supernova (SN) detected <1 day after the explosion. The SN rises to a blue and short-lived (2 days) initial peak. Early-time spectral observations of SN 2022oqm show a hot (40,000 K) continuum with high ionization C and O absorption features at velocities of 4000 km s−1, while its photospheric radius expands at 20,000 km s−1, indicating a pre-existing distribution of expanding C/O material. After ∼2.5 days, both the spectrum and light curves evolve into those of a typical SN Ic, with line velocities of ∼10,000 km s−1, in agreement with the evolution of the photospheric radius. The optical light curves reach a second peak att≈ 15 days. Byt= 60 days, the spectrum of SN 2022oqm becomes nearly nebular, displaying strong Caiiand [Caii] emission with no detectable [Oi], marking this event as Ca-rich. The early behavior can be explained by 10−3M⊙of optically thin circumstellar material (CSM) surrounding either (1) a massive compact progenitor such as a Wolf–Rayet star, (2) a massive stripped progenitor with an extended envelope, or (3) a binary system with a white dwarf. We propose that the early-time light curve is powered by both the interaction of the ejecta with the optically thin CSM and shock cooling (in the massive star scenario). The observations can be explained by CSM that is optically thick to X-ray photons, is optically thick in the lines as seen in the spectra, and is optically thin to visible-light continuum photons that come either from downscattered X-rays or from the shock-heated ejecta. Calculations show that this scenario is self-consistent.more » « less
-
Context. SN 2020qlb (ZTF20abobpcb) is a hydrogen-poor superluminous supernova (SLSN-I) that is among the most luminous (maximum M g = −22.25 mag) and that has one of the longest rise times (77 days from explosion to maximum). We estimate the total radiated energy to be > 2.1 × 10 51 erg. SN 2020qlb has a well-sampled light curve that exhibits clear near and post peak undulations, a phenomenon seen in other SLSNe, whose physical origin is still unknown. Aims. We discuss the potential power source of this immense explosion as well as the mechanisms behind its observed light curve undulations. Methods. We analyze photospheric spectra and compare them to other SLSNe-I. We constructed the bolometric light curve using photometry from a large data set of observations from the Zwicky Transient Facility (ZTF), Liverpool Telescope (LT), and Neil Gehrels Swift Observatory and compare it with radioactive, circumstellar interaction and magnetar models. Model residuals and light curve polynomial fit residuals are analyzed to estimate the undulation timescale and amplitude. We also determine host galaxy properties based on imaging and spectroscopy data, including a detection of the [O III] λ 4363, auroral line, allowing for a direct metallicity measurement. Results. We rule out the Arnett 56 Ni decay model for SN 2020qlb’s light curve due to unphysical parameter results. Our most favored power source is the magnetic dipole spin-down energy deposition of a magnetar. Two to three near peak oscillations, intriguingly similar to those of SN 2015bn, were found in the magnetar model residuals with a timescale of 32 ± 6 days and an amplitude of 6% of peak luminosity. We rule out centrally located undulation sources due to timescale considerations; and we favor the result of ejecta interactions with circumstellar material (CSM) density fluctuations as the source of the undulations.more » « less
-
ABSTRACT Hydrogen-rich Type II supernovae (SNe II) are the most frequently observed class of core-collapse SNe (CCSNe). However, most studies that analyse large samples of SNe II lack events with absolute peak magnitudes brighter than −18.5 mag at rest-frame optical wavelengths. Thanks to modern surveys, the detected number of such luminous SNe II (LSNe II) is growing. There exist several mechanisms that could produce luminous SNe II. The most popular propose either the presence of a central engine (a magnetar gradually spinning down or a black hole accreting fallback material) or the interaction of supernova ejecta with circumstellar material (CSM) that turns kinetic energy into radiation energy. In this work, we study the light curves and spectral series of a small sample of six LSNe II that show peculiarities in their H α profile, to attempt to understand the underlying powering mechanism. We favour an interaction scenario with CSM that is not dense enough to be optically thick to electron scattering on large scales – thus, no narrow emission lines are observed. This conclusion is based on the observed light curve (higher luminosity, fast decline, blue colours) and spectral features (lack of persistent narrow lines, broad H α emission, lack of H α absorption, weak, or non-existent metal lines) together with comparison to other luminous events available in the literature. We add to the growing evidence that transients powered by ejecta–CSM interaction do not necessarily display persistent narrow emission lines.more » « less
-
ABSTRACT We present a sample of 14 hydrogen-rich superluminous supernovae (SLSNe II) from the Zwicky Transient Facility (ZTF) between 2018 and 2020. We include all classified SLSNe with peaks Mg < −20 mag with observed broad but not narrow Balmer emission, corresponding to roughly 20 per cent of all hydrogen-rich SLSNe in ZTF phase I. We examine the light curves and spectra of SLSNe II and attempt to constrain their power source using light-curve models. The brightest events are photometrically and spectroscopically similar to the prototypical SN 2008es, while others are found spectroscopically more reminiscent of non-superluminous SNe II, especially SNe II-L. 56Ni decay as the primary power source is ruled out. Light-curve models generally cannot distinguish between circumstellar interaction (CSI) and a magnetar central engine, but an excess of ultraviolet (UV) emission signifying CSI is seen in most of the SNe with UV data, at a wide range of photometric properties. Simultaneously, the broad H α profiles of the brightest SLSNe II can be explained through electron scattering in a symmetric circumstellar medium (CSM). In other SLSNe II without narrow lines, the CSM may be confined and wholly overrun by the ejecta. CSI, possibly involving mass lost in recent eruptions, is implied to be the dominant power source in most SLSNe II, and the diversity in properties is likely the result of different mass loss histories. Based on their radiated energy, an additional power source may be required for the brightest SLSNe II, however – possibly a central engine combined with CSI.more » « less
-
Abstract We present optical and near-infrared (NIR, Y - , J - , H- band) observations of 42 Type Ia supernovae (SNe Ia) discovered by the untargeted intermediate Palomar Transient Factory survey. This new data set covers a broad range of redshifts and host galaxy stellar masses, compared to previous SN Ia efforts in the NIR. We construct a sample, using also literature data at optical and NIR wavelengths, to examine claimed correlations between the host stellar masses and the Hubble diagram residuals. The SN magnitudes are corrected for host galaxy extinction using either a global total-to-selective extinction ratio, R V = 2.0, for all SNe, or a best-fit R V for each SN individually. Unlike previous studies that were based on a narrower range in host stellar mass, we do not find evidence for a “mass step,” between the color- and stretch-corrected peak J and H magnitudes for galaxies below and above log ( M * / M ⊙ ) = 10 . However, the mass step remains significant (3 σ ) at optical wavelengths ( g , r , i ) when using a global R V , but vanishes when each SN is corrected using their individual best-fit R V . Our study confirms the benefits of the NIR SN Ia distance estimates, as these are largely exempted from the empirical corrections dominating the systematic uncertainties in the optical.more » « less