skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Solomey, N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Double- and single-differential cross sections for inclusive charged-current ν μ -nucleus scattering are reported for the kinematic domain 0 to 2 GeV / c in three-momentum transfer and 0 to 2 GeV in available energy, at a mean ν μ energy of 1.86 GeV. The measurements are based on an estimated 995,760 ν μ charged-current (CC) interactions in the scintillator medium of the NOvA Near Detector. The subdomain populated by 2-particle-2-hole (2p2h) reactions is identified by the cross section excess relative to predictions for ν μ -nucleus scattering that are constrained by a data control sample. Models for 2-particle-2-hole processes are rated by χ 2 comparisons of the predicted-versus-measured ν μ CC inclusive cross section over the full phase space and in the restricted subdomain. Shortfalls are observed in neutrino generator predictions obtained using the theory-based València and SuSAv2 2p2h models. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. We report a search for neutrino oscillations to sterile neutrinos under a model with three active and one sterile neutrinos ( 3 + 1 model). This analysis uses the NOvA detectors exposed to the NuMI beam, running in neutrino mode. The data exposure, 13.6 × 10 20 protons on target, doubles that previously analyzed by NOvA, and the analysis is the first to use ν μ charged-current interactions in conjunction with neutral-current interactions. Neutrino samples in the near and far detectors are fitted simultaneously, enabling the search to be carried out over a Δ m 41 2 range extending 2 (3) orders of magnitude above (below) 1 eV 2 . NOvA finds no evidence for active-to-sterile neutrino oscillations under the 3 + 1 model at 90% confidence level. New limits are reported in multiple regions of parameter space, excluding some regions currently allowed by IceCube at 90% confidence level. We additionally set the most stringent limits for anomalous ν τ appearance for Δ m 41 2 3 eV 2 . Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  3. Abstract Measuring observables to constrain models using maximum-likelihood estimation is fundamental to many physics experiments. Wilks' theorem provides a simple way to construct confidence intervals on model parameters, but it only applies under certain conditions. These conditions, such as nested hypotheses and unbounded parameters, are often violated in neutrino oscillation measurements and other experimental scenarios. Monte Carlo methods can address these issues, albeit at increased computational cost. In the presence of nuisance parameters, however, the best way to implement a Monte Carlo method is ambiguous. This paper documents the method selected by the NOvA experiment, the profile construction. It presents the toy studies that informed the choice of method, details of its implementation, and tests performed to validate it. It also includes some practical considerations which may be of use to others choosing to use the profile construction. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  4. This Letter reports a search for charge-parity ( C P ) symmetry violating nonstandard interactions (NSI) of neutrinos with matter using the NOvA Experiment, and examines their effects on the determination of the standard oscillation parameters. Data from ν μ ( ν ¯ μ ) ν μ ( ν ¯ μ ) and ν μ ( ν ¯ μ ) ν e ( ν ¯ e ) oscillation channels are used to measure the effect of the NSI parameters ϵ e μ and ϵ e τ . With 90% CL the magnitudes of the NSI couplings are constrained to be | ϵ e μ | 0.3 and | ϵ e τ | 0.4 . A degeneracy at | ϵ e τ | 1.8 is reported, and we observe that the presence of NSI limits sensitivity to the standard C P phase δ C P . Published by the American Physical Society2024 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  5. NOvA is a long-baseline neutrino oscillation experiment that measures oscillations in charged-current ν μ ν μ (disappearance) and ν μ ν e (appearance) channels, and their antineutrino counterparts, using neutrinos of energies around 2 GeV over a distance of 810 km. In this work we reanalyze the dataset first examined in our previous paper [] using an alternative statistical approach based on Bayesian Markov chain Monte Carlo. We measure oscillation parameters consistent with the previous results. We also extend our inferences to include the first NOvA measurements of the reactor mixing angle θ 13 , where we find 0.071 sin 2 2 θ 13 0.107 , and the Jarlskog invariant, where we observe no significant preference for the C P -conserving value J = 0 over values favoring C P violation. We use these results to examine the effects of constraints from short-baseline measurements of θ 13 using antineutrinos from nuclear reactors when making NOvA measurements of θ 23 . Our long-baseline measurement of θ 13 is shown to be consistent with the reactor measurements, supporting the general applicability and robustness of the Pontecorvo-Maki-Nakagawa-Sakata framework for neutrino oscillations. Published by the American Physical Society2024 
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  6. The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electron-neutrino charged-current absorption on Ar 40 and elastic scattering of neutrinos on electrons. Procedures to reconstruct individual interactions, including a newly developed technique called “brems flipping,” as well as the burst direction from an ensemble of interactions are described. Performance of the burst direction reconstruction is evaluated for supernovae happening at a distance of 10 kpc for a specific supernova burst flux model. The pointing resolution is found to be 3.4 degrees at 68% coverage for a perfect interaction-channel classification and a fiducial mass of 40 kton, and 6.6 degrees for a 10 kton fiducial mass respectively. Assuming a 4% rate of charged-current interactions being misidentified as elastic scattering, DUNE’s burst pointing resolution is found to be 4.3 degrees (8.7 degrees) at 68% coverage. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  7. Abstract This paper introduces a novel track-length extension fitting algorithm for measuring the kinetic energies of inelastically interacting particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy loss as a function of the energy, including models of electron recombination and detector response. The algorithm can be used to measure the energies of particles that interact before they stop, such as charged pions that are absorbed by argon nuclei. The algorithm's energy measurement resolutions and fractional biases are presented as functions of particle kinetic energy and number of track hits using samples of stopping secondary charged pions in data collected by the ProtoDUNE-SP detector, and also in a detailed simulation. Additional studies describe the impact of thedE/dxmodel on energy measurement performance. The method described in this paper to characterize the energy measurement performance can be repeated in any LArTPC experiment using stopping secondary charged pions. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  8. The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I and Phase II, as did the European Strategy for Particle Physics. While the construction of the DUNE Phase I is well underway, this White Paper focuses on DUNE Phase II planning. DUNE Phase-II consists of a third and fourth far detector (FD) module, an upgraded near detector complex, and an enhanced 2.1 MW beam. The fourth FD module is conceived as a "Module of Opportunity", aimed at expanding the physics opportunities, in addition to supporting the core DUNE science program, with more advanced technologies. This document highlights the increased science opportunities offered by the DUNE Phase II near and far detectors, including long-baseline neutrino oscillation physics, neutrino astrophysics, and physics beyond the standard model. It describes the DUNE Phase II near and far detector technologies and detector design concepts that are currently under consideration. A summary of key R&D goals and prototyping phases needed to realize the Phase II detector technical designs is also provided. DUNE's Phase II detectors, along with the increased beam power, will complete the full scope of DUNE, enabling a multi-decadal program of groundbreaking science with neutrinos. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  9. ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV / c beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to be 380 ± 26 mbarns for the 6 GeV / c setting and 379 ± 35 mbarns for the 7 GeV / c setting. Published by the American Physical Society2024 
    more » « less
    Free, publicly-accessible full text available November 1, 2025