skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Son, Sangyoung"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    For many practical and theoretical purposes, various types of tsunami wave models have been developed and utilized so far. Some distinction among them can be drawn based on governing equations used by the model. Shallow water equations and Boussinesq equations are probably most typical ones among others since those are computationally efficient and relatively accurate compared to 3D Navier-Stokes models. From this idea, some coupling effort between Boussinesq model and shallow water equation model have been made (e.g., Son et al. (2011)). In the present study, we couple two different types of tsunami models, i.e., nondispersive shallow water model of characteristic form(MOST ver.4) and dispersive Boussinesq model of non-characteristic form(Son and Lynett (2014)) in an attempt to improve modelling accuracy and efficiency.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/cTXybDEnfsQ 
    more » « less
  2. null (Ed.)
    This paper describes a two-dimensional scalar transport model solving advection-diffusion equation based on GPU-accelerated Boussinesq model called Celeris. Celeris is the firstly-developed Boussinesq-type model that is equipped with an interactive system between user and computing unit. Celeris provides greatly advantageous user-interface that one can change not only water level, topography but also model parameters while the simulation is running. In this study, an advection-diffusion equation for scalar transport was coupled with extended Boussinesq equations to simulate scalar transport in the nearshore.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/aHvMmdz3wps 
    more » « less
  3. null (Ed.)