Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This study examines the role of the relative wind (RW) effect (wind relative to ocean current) in the regional ocean circulation and extratropical storm track in the South Indian Ocean. Comparison of two high-resolution regional coupled model simulations with/without the RW effect reveals that the most conspicuous ocean circulation response is the significant weakening of the overly energetic anticyclonic standing eddy off Port Elizabeth, South Africa, a biased feature ascribed to upstream retroflection of the Agulhas Current (AC). This opens a pathway through which the AC transports the warm and salty water mass from the subtropics, yielding marked increases in sea surface temperature (SST), upward turbulent heat flux (THF), and meridional SST gradient in the Agulhas retroflection region. These thermodynamic and dynamic changes are accompanied by the robust strengthening of the local low-tropospheric baroclinicity and the baroclinic wave activity in the atmosphere. Examination of the composite lifecycle of synoptic-scale storms subjected to the high THF events indicates a robust strengthening of the extratropical storms far downstream. Energetics calculations for the atmosphere suggest that the baroclinic energy conversion from the basic flow is the chief source of increased eddy available potential energy, which is subsequently converted to eddy kinetic energy, providing for the growth of transient baroclinic waves. Overall, the results suggest that the mechanical and thermal air-sea interactions are inherently and inextricably linked together to substantially influence the extratropical storm tracks in the South Indian Ocean.more » « less
-
Abstract The Southern Ocean, an important region for the uptake of anthropogenic carbon dioxide (CO2), features strong surface currents due to substantial mesoscale meanders and eddies. These features interact with the wind and modify the momentum transfer from the atmosphere to the ocean. Although such interactions are known to reduce momentum transfer, their impact on air‐sea carbon exchange remains unclear. Using a 1/20° physical‐biogeochemical coupled ocean model, we examined the impact of the current‐wind interaction on the surface carbon concentration and the air‐sea carbon exchange in the Southern Ocean. The current‐wind interaction decreased winter partial pressure of CO2(
p CO2) at the ocean surface mainly south of the northern subantarctic front. It also reducedp CO2in summer, indicating enhanced uptake, but not to the same extent as the winter loss. Consequently, the net outgassing of CO2was found to be reduced by approximately 17% when including current‐wind interaction. These changes stem from the combined effect of vertical mixing and Ekman divergence. A budget analysis of dissolved inorganic carbon (DIC) revealed that a weakening of vertical mixing by current‐wind interaction reduces the carbon supply from below, and particularly so in winter. The weaker wind stress additionally lowers the subsurface DIC concentration in summer, which can affect the vertical diffusive flux of carbon in winter. Our study suggests that ignoring current‐wind interactions in the Southern Ocean can overestimate winter CO2outgassing. -
Abstract We report the significant impact of near‐inertial waves (NIWs) on vertical mixing and air‐sea carbon dioxide (CO2) fluxes in the Southern Ocean using a biogeochemical model coupled to an eddy‐rich ocean circulation model. The effects of high‐frequency processes are quantified by comparing the fully coupled solution (ONLINE) to two offline simulations based on 5‐day‐averaged output of the ONLINE simulation: one that uses vertical mixing archived from the ONLINE model (CTRL) and another in which vertical mixing is recomputed from the 5‐day average hydrodynamic fields (5dAVG). In this latter simulation, processes with temporal variabilities of a few days including NIWs are excluded in the biogeochemical simulation. Suppression of these processes reduces vertical shear and vertical mixing in the upper ocean, leading to decreased supply of carbon‐rich water from below, less CO2outgassing in austral winter, and more uptake in summer. The net change amounts up to one third of the seasonal variability in Southern Ocean CO2flux. Our results clearly demonstrate the importance of resolving high‐frequency processes such as NIWs to better estimate the carbon cycle in numerical model simulations.
-
Abstract The ratio of dissolved oxygen to argon in seawater is frequently employed to estimate rates of net community production (NCP) in the oceanic mixed layer. The in situ O2/Ar‐based method accounts for many physical factors that influence oxygen concentrations, permitting isolation of the biological oxygen signal produced by the balance of photosynthesis and respiration. However, this technique traditionally relies upon several assumptions when calculating the mixed‐layer O2/Ar budget, most notably the absence of vertical fluxes of O2/Ar and the principle that the air‐sea gas exchange of biological oxygen closely approximates net productivity rates. Employing a Lagrangian study design and leveraging data outputs from a regional physical oceanographic model, we conducted in situ measurements of O2/Ar in the California Current Ecosystem in spring 2016 and summer 2017 to evaluate these assumptions within a “worst‐case” field environment. Quantifying vertical fluxes, incorporating nonsteady state changes in O2/Ar, and comparing NCP estimates evaluated over several day versus longer timescales, we find differences in NCP metrics calculated over different time intervals to be considerable, also observing significant potential effects from vertical fluxes, particularly advection. Additionally, we observe strong diel variability in O2/Ar and NCP rates at multiple stations. Our results reemphasize the importance of accounting for vertical fluxes when interpreting O2/Ar‐derived NCP data and the potentially large effect of nonsteady state conditions on NCP evaluated over shorter timescales. In addition, diel cycles in surface O2/Ar can also bias interpretation of NCP data based on local productivity and the time of day when measurements were made.
-
Abstract Anthropogenic influences have led to a strengthening and poleward shift of westerly winds over the Southern Ocean, especially during austral summer. We use observations, an idealized eddy‐resolving ocean sea ice channel model, and a global coupled model to explore the Southern Ocean response to a step change in westerly winds. Previous work hypothesized a two time scale response for sea surface temperature. Initially, Ekman transport cools the surface before sustained upwelling causes warming on decadal time scales. The fast response is robust across our models and the observations: We find Ekman‐driven cooling in the mixed layer, mixing‐driven warming below the mixed layer, and a small upwelling‐driven warming at the temperature inversion. The long‐term response is inaccessible from observations. Neither of our models shows a persistent upwelling anomaly, or long‐term, upwelling‐driven subsurface warming. Mesoscale eddies act to oppose the anomalous wind‐driven upwelling, through a process known as eddy compensation, thereby preventing long‐term warming.