skip to main content


Search for: All records

Creators/Authors contains: "Song, Rui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Reinforcement learning is a general technique that allows an agent to learn an optimal policy and interact with an environment in sequential decision-making problems. The goodness of a policy is measured by its value function starting from some initial state. The focus of this paper was to construct confidence intervals (CIs) for a policy’s value in infinite horizon settings where the number of decision points diverges to infinity. We propose to model the action-value state function (Q-function) associated with a policy based on series/sieve method to derive its confidence interval. When the target policy depends on the observed data as well, we propose a SequentiAl Value Evaluation (SAVE) method to recursively update the estimated policy and its value estimator. As long as either the number of trajectories or the number of decision points diverges to infinity, we show that the proposed CI achieves nominal coverage even in cases where the optimal policy is not unique. Simulation studies are conducted to back up our theoretical findings. We apply the proposed method to a dataset from mobile health studies and find that reinforcement learning algorithms could help improve patient’s health status. A Python implementation of the proposed procedure is available at https://github.com/shengzhang37/SAVE.

     
    more » « less
  2. Abstract Background Biological mutagens (such as transposon) with sequences inserted, play a crucial role to link observed phenotype and genotype in reverse genetic studies. For this reason, accurate and efficient software tools for identifying insertion sites based on the analysis of sequencing reads are desired. Results We developed a bioinformatics tool, a Finder, to identify genome-wide Insertions in Mutagenesis (named as “InMut-Finder”), based on target sequences and flanking sequences from long reads, such as Oxford Nanopore Sequencing. InMut-Finder succeeded in identify > 100 insertion sites in Medicago truncatula and soybean mutants based on sequencing reads of whole-genome DNA or enriched insertion-site DNA fragments. Insertion sites discovered by InMut-Finder were validated by PCR experiments. Conclusion InMut-Finder is a comprehensive and powerful tool for automated insertion detection from Nanopore long reads. The simplicity, efficiency, and flexibility of InMut-Finder make it a valuable tool for functional genomics and forward and reverse genetics. InMut-Finder was implemented with Perl, R, and Shell scripts, which are independent of the OS. The source code and instructions can be accessed at https://github.com/jsg200830/InMut-Finder . 
    more » « less