skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Song, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 4, 2025
  2. Free, publicly-accessible full text available September 1, 2025
  3. Free, publicly-accessible full text available January 8, 2026
  4. Free, publicly-accessible full text available September 25, 2025
  5. Free, publicly-accessible full text available July 15, 2025
  6. Bae, K-H; Feng, B; Kim, S; Lazarova-Molnar, S; Zheng, Z; Roeder, T; Thiesing, R (Ed.)
    This paper studies computational improvement of the Gaussian Markov improvement algorithm (GMIA) whose underlying response surface model is a Gaussian Markov random field (GMRF). GMIA’s computational bottleneck lies in the sampling decision, which requires factorizing and inverting a sparse, but large precision matrix of the GMRF at every iteration. We propose smart GMIA (sGMIA) that performs expensive linear algebraic operations intermittently, while recursively updating the vectors and matrices necessary to make sampling decisions for several iterations in between. The latter iterations are much cheaper than the former at the beginning, but their costs increase as the recursion continues and ultimately surpass the cost of the former. sGMIA adaptively decides how long to continue the recursion by minimizing the average per-iteration cost. We perform a floating-point operation analysis to demonstrate the computational benefit of sGMIA. Experiment results show that sGMIA enjoys computational efficiency while achieving the same search effectiveness as GMIA. 
    more » « less