Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Conjugated microporous polymers (CMPs) are an emerging class of porous organic polymers that combine -conjugated skeletons with permanent micropores. Since their first report in 2007, the enormous exploration of linkage types, building units, and synthetic methods for CMPs have facilitated their potential applications in various areas, from gas separations to energy storage. Owning to their unique construction, CMPs offer the opportunity for the precise design of conjugated skeletons and pore environment engineering, which allow the construction of functional porous materials at the molecular level. The capability to chemically alter CMPs to targeted applications allows for the fine adaptation of functionalities for the ever changing environments and necessities. Bifunctional CMPs are a branch of functionalized CMPs that have caught interest of researchers because of their inherent synergistic systems that can expand their applications and optimize their performance. This review attempts to discuss the rational design and synthesis for bifunctional CMPs and summarize their advanced applications. To conclude, our own perspective on the research prospect of this type of material is outlined.more » « less
-
Abstract Covalent organic frameworks (COFs) are an emerging class of functional nanostructures with intriguing properties, due to their unprecedented combination of high crystallinity, tunable pore size, large surface area, and unique molecular architecture. The range of properties characterized in COFs has rapidly expanded to include those of interest for numerous applications ranging from energy to environment. Here, a background overview is provided, consisting of a brief introduction of porous materials and the design feature of COFs. Then, recent advancements of COFs as a designer platform for a plethora of applications are emphasized together with discussions about the strategies and principles involved. Finally, challenges remaining for this type material for real applications are outlined.more » « less
-
Abstract Various robust, crystalline, and porous organic frameworks based on in situ‐formed imine‐linked oligomers were investigated. These oligomers self‐assembled through collaborative intermolecular hydrogen bonding interactions via liquid–liquid interfacial reactions. The soluble oligomers were kinetic products with multiple unreacted aldehyde groups that acted as hydrogen bond donors and acceptors and directed the assembly of the resulting oligomers into 3D frameworks. The sequential formation of robust covalent linkages and highly reversible hydrogen bonds enforced long‐range symmetry and facilitated the production of large single crystals, with structures that were unambiguously determined by single‐crystal X‐ray diffraction. The unique hierarchical arrangements increased the steric hindrance of the imine bond, which prevented attacks from water molecules, greatly improving the stability. The multiple binding sites in the frameworks enabled rapid sequestration of micropollutant in water.more » « less