skip to main content

Search for: All records

Creators/Authors contains: "Soni, Sandeep"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The representation of mobility in literary narratives has important implications for the cultural understanding of human movement and migration. In this paper, we introduce novel methods for measuring the physical mobility of literary characters through narrative space and time. We capture mobility through geographically defined space, as well as through generic locations such as homes, driveways, and forests. Using a dataset of over 13,000 books published in English since 1789, we observe significant "small world" effects in fictional narratives. Specifically, we find that fictional characters cover far less distance than their non-fictional counterparts; the pathways covered by fictional characters are highly formulaic and limited from a global perspective; and fiction exhibits a distinctive semantic investment in domestic and private places. Surprisingly, we do not find that characters' ascribed gender has a statistically significant effect on distance traveled, but it does influence the semantics of domesticity. 
    more » « less
    Free, publicly-accessible full text available May 28, 2025
  2. Tracking characters and locations throughout a story can help improve the understanding of its plot structure. Prior research has analyzed characters and locations from text independently without grounding characters to their locations in narrative time. Here, we address this gap by proposing a new spatial relationship categorization task. The objective of the task is to assign a spatial relationship category for every character and location co-mention within a window of text, taking into consideration linguistic context, narrative tense, and temporal scope. To this end, we annotate spatial relationships in approximately 2500 book excerpts and train a model using contextual embeddings as features to predict these relationships. When applied to a set of books, this model allows us to test several hypotheses on mobility and domestic space, revealing that protagonists are more mobile than non-central characters and that women as characters tend to occupy more interior space than men. Overall, our work is the first step towards joint modeling and analysis of characters and places in narrative text. 
    more » « less
  3. In this work, we carry out a data archaeology to infer books that are known to ChatGPT and GPT-4 using a name cloze membership inference query. We find that OpenAI models have memorized a wide collection of copyrighted materials, and that the degree of memorization is tied to the frequency with which passages of those books appear on the web. The ability of these models to memorize an unknown set of books complicates assessments of measurement validity for cultural analytics by contaminating test data; we show that models perform much better on memorized books than on non-memorized books for downstream tasks. We argue that this supports a case for open models whose training data is known. 
    more » « less
  4. A standard measure of the influence of a research paper is the number of times it is cited. However, papers may be cited for many reasons, and citation count offers limited information about the extent to which a paper affected the content of subsequent publications. We therefore propose a novel method to quantify linguistic influence in timestamped document collections. There are two main steps: first, identify lexical and semantic changes using contextual embeddings and word frequencies; second, aggregate information about these changes into per-document influence scores by estimating a high-dimensional Hawkes process with a low-rank parameter matrix. We show that this measure of linguistic influence is predictive of future citations: the estimate of linguistic influence from the two years after a paper’s publication is correlated with and predictive of its citation count in the following three years. This is demonstrated using an online evaluation with incremental temporal training/test splits, in comparison with a strong baseline that includes predictors for initial citation counts, topics, and lexical features. 
    more » « less
  5. Abstract

    Diachronic word embeddings—vector representations of words over time—offer remarkable insights into the evolution of language and provide a tool for quantifying sociocultural change from text documents. Prior work has used such embeddings to identify shifts in the meaning of individual words. However, simply knowing that a word has changed in meaning is insufficient to identify the instances of word usage that convey the historical meaning or the newer meaning. In this study, we link diachronic word embeddings to documents, by situating those documents as leaders or laggards with respect to ongoing semantic changes. Specifically, we propose a novel method to quantify the degree of semantic progressiveness in each word usage, and then show how these usages can be aggregated to obtain scores for each document. We analyze two large collections of documents, representing legal opinions and scientific articles. Documents that are scored as semantically progressive receive a larger number of citations, indicating that they are especially influential. Our work thus provides a new technique for identifying lexical semantic leaders and demonstrates a new link between progressive use of language and influence in a citation network.

    more » « less