Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Local‐scale environmental justice studies of freshwaters have found that marginalized populations are more likely than others to be burdened with poor‐quality waters. However, studies have yet to examine whether monitoring data are sufficient to determine the generality of such results at the national scale. We analyzed racial and ethnic community composition surrounding lakes and the presence of one‐time and long‐term (≥15 years) water‐quality data across the conterminous US. Relative to lakes in White and non‐Hispanic communities, lakes in communities of color and Hispanic communities were three times less likely to be monitored at least once. Moreover, as compared to lakes in White communities, lakes in communities of color were seven times less likely to have long‐term monitoring data; similarly, as compared to lakes in non‐Hispanic communities, lakes in Hispanic communities were nineteen times less likely to have long‐term monitoring data. Given this evidence, assessing the current water quality of and temporal changes in lakes in communities of color and Hispanic communities is extremely difficult. To achieve equitable management outcomes for people of all racial and ethnic backgrounds, freshwater monitoring programs must expand their sampling and revise their designs.more » « lessFree, publicly-accessible full text available September 9, 2025
-
Abstract A variety of classification approaches are used to facilitate understanding, prediction, monitoring, and the management of lakes. However, broad‐scale applicability of current approaches is limited by either the need for in situ lake data, incompatibilities among approaches, or a lack of empirical testing of approaches based on ex situ data. We developed a new geographic classification approach for 476,697 lakes ≥ 1 ha in the conterminous U.S. based on lake archetypes representing end members along gradients of multiple geographic features. We identified seven lake archetypes with distinct combinations of climate, hydrologic, geologic, topographic, and morphometric properties. Individual lakes were assigned weights for each of the seven archetypes such that groups of lakes with similar combinations of archetype weights tended to cluster spatially (although not strictly contiguous) and to have similar limnological properties (e.g., concentrations of nutrients, chlorophylla(Chla), and dissolved organic carbon). Further, archetype lake classification improved commonly measured limnological relationships (e.g., between nutrients and Chla) compared to a global model; a discrete archetype classification slightly outperformed an ecoregion classification; and considering lakes as continuous mixtures of archetypes in a more complex model further improved fit. Overall, archetype classification of US lakes as continuous mixtures of geographic features improved understanding and prediction of lake responses to limnological drivers and should help researchers and managers better characterize and forecast lake states and responses to environmental change.more » « less
-
The LAGOS-US LIMNO data package is one of the core data modules of LAGOS-US, an extensible research-ready platform designed to study the 479,950 lakes and reservoirs larger than or equal to 1 ha in the conterminous US (48 states plus the District of Columbia). The LIMNO module contains in situ observations of 47 parameters of lake physics, chemistry, and biology (hereafter referred to as chemistry) from lake surface samples (defined as observations taken from the epilimnion of a lake) obtained from the Water Quality Portal, the National Lakes Assessment (2007, 2012, 2017), and NEON programs. LIMNO provides 3,511,020 observations across all parameters collected between 1975 and 2021 from 20,329 lakes; the number of observations per lake ranged from 1 to 20,605 with a median of 32. The database design that supports the LAGOS-US research platform was created based on several important design features: lakes are the fundamental unit of consideration, all lakes in the spatial extent above the minimum size must be represented, and most information is connected to individual lakes. The design is modular, interoperable (the modules can be used with each other, as well as other comprehensive lake data products such as the USGS NHD), and extensible (future database modules can be developed and used in the LAGOS-US research platform by others). Users are encouraged to use the other two core data modules that are part of the LAGOS-US platform: LOCUS (location, identifiers, and physical characteristics of lakes and their watersheds) and GEO (characteristics defining geospatial and temporal ecological setting quantified at multiple spatial divisions) that are each found in their own data packages.more » « less
-
The LAGOS-US RESERVOIR data module (hereafter, RESERVOIR) classifies all 137,465 lakes > 4 hectares in the conterminous U.S. into one of the following three categories using a machine-learning predictive model based on visual interpretation of lake outlines and a classification rule based on lake shape. Natural Lakes (NLs) are defined as lakes that are likely to be entirely or mostly naturally-formed and that do not have large, flow-altering structures on or near them; Reservoir Class A’s (RSVR_A) are defined as lakes that are likely to be either human-made or highly human-altered by the presence of a relatively large water control structure that appears to significantly change the flow of water; and Reservoir Class B’s (RSVR_Bs) are lakes that are likely to be entirely human-made based on isolation from rivers and a highly angular shape that is rarely, if ever, seen in natural lakes also often. We trained the machine learning models on 12,162 manually-classified lakes to assign probabilities of a lake being in 1 of 2 of the categories (NL or RSVR), then we further classified the RSVR classification into either A or B based on NHD Fcodes, isolation, and angularity. The data module includes a detailed User Guide, metadata tables, and a data table that includes information such as location, lake geometry, surface water connectivity class, and official name. Using our definition, our classification indicates that over 46 % of lakes > 4 ha in the conterminous U.S. are reservoir lakes. These data can be combined with other LAGOS-US data modules and U.S. national databases using unique lake identifiers to study both reservoir lakes and natural lakes at broad scales.more » « less
-
null (Ed.)Global declines in biodiversity have the potential to affect ecosystem function, and vice versa, in both terrestrial and aquatic ecological realms. While many studies have considered biodiversity-ecosystem function (BEF) relationships at local scales within single realms, there is a critical need for more studies examining BEF linkages among ecological realms, across scales, and across trophic levels. We present a framework linking abiotic attributes, productivity, and biodiversity across terrestrial and inland aquatic realms. We review examples of the major ways that BEF linkages form across realms–cross-system subsidies, ecosystem engineering, and hydrology. We then formulate testable hypotheses about the relative strength of these connections across spatial scales, realms, and trophic levels. While some studies have addressed these hypotheses individually, to holistically understand and predict the impact of biodiversity loss on ecosystem function, researchers need to move beyond local and simplified systems and explicitly investigate cross-realm and trophic interactions and large-scale patterns and processes. Recent advances in computational power, data synthesis, and geographic information science can facilitate studies spanning multiple ecological realms that will lead to a more comprehensive understanding of BEF connections.more » « less