skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sorby, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Industry leaders emphasize that engineering students' technical communication and writing skills must be improved. Despite various institutional efforts, which include technical communication courses or engineering design projects aimed at enhancing students’ communication abilities, many believe there has been only slow improvement in this area. There has also been a dearth of longitudinal studies that examine the development of engineering students’ technical communication competencies from undergraduate to industry. This paper aims to contribute to this area through the creation of a rubric that specifically examines the writing competencies and technical communication ability of engineering students. This paper is part of a larger, NSF-funded research study that examines the quality of students’ written and oral communication skills and seeks to understand their relationship to the students’ spatial abilities. First-year engineering students in their second semester at a large R1 Midwestern university were examined. Students were tasked with creating a written report responding to a set of questions that asked about their team-based engineering design project completed in their first semester. As this occurred months prior, this non-graded report became a reflection on their experience and innate abilities. While low stakes, it mimicked a more authentic writing experience students encounter in industry. Students' responses were examined collaboratively by an interdisciplinary team which created a rubric through an iterative process. This rubric was distributed to the interdisciplinary team and outside evaluators composed of individuals in industry and engineering faculty. An inter-rater reliability analysis was conducted to examine levels of agreement between the interdisciplinary team and outside evaluators, and implications of this inter-rater reliability score and the process of rubric application were documented. Results of this paper include details on the development of a rubric that examine students’ technical communication and writing skills. Traditional rubrics utilized by engineering faculty usually address an entire project for engineering students, which includes students' content knowledge, writing capabilities, and the requirements of the project. Such rubrics are often used to provide feedback to students and evaluation in the form of grades. The narrower focus of the rubric being developed here can provide insights into communication and writing competencies of engineering students. Scores secured through the use of this rubric will aid in the research study’s goal of finding correlations between engineering students’ communication skills and spatial abilities (assessed outside of this current effort). Spatial ability has been well-documented as an effective indicator of success in STEM, and interventions have been developed to support development in students with weaker spatial skills. 23, 24This has prompted this research to explore links between spatial skills and communication abilities, as validated spatial interventions may help improve communication abilities. These current results may also provide unique insights into first-year engineering students’ writing competencies when reporting on a more authentic (non-graded) engineering task. Such information may be useful in eventually shaping guidance of students’ communication instruction in hopes of better preparing them for industry; this is the focus of a planned future research study. 
    more » « less
  2. Industry leaders rarely remark that the technical skills of engineering students are lacking; however, they frequently indicate that new engineers should be better prepared in communication skills, particularly written communication skills. In contrast, the visualization ability, or spatial skills, of engineering majors are typically excellent. Prior research has demonstrated that spatial ability is a significant predictor for graduating from STEM fields, particularly in engineering. This paper is part of a larger project that is exploring whether these two phenomena – poor written communication skills and well-developed spatial skills – are linked. In other words, is there a negative correlation between these two types of skills for engineering students? Data for this study was collected from first-year engineering students at a large university in the U.S. An online survey was administered that consisted of two validated spatial visualization tests, a verbal analogy task, and questions regarding students’ self-perceived communication ability. Student scores on spatial visualization tests and a verbal analogy task were compared between student groups and students’ perceived ability to communicate. Results identified statistically significant differences in test scores between domestic and international male students on all three tests. Interestingly, no gender-based differences were observed in spatial skills. Results from this study will contribute to future exploration of the link between spatial and technical communication skills. Results can also help inform the development of an intervention aimed at improving the written technical communication skills of our engineering students by helping them learn to write about spatial phenomena. 
    more » « less
  3. Design projects are an important part of many first-year engineering programs. The desire to employ holistic assessment strategies to student work with open-ended and divergent responses has been widely noted in the literature. Holistic strategies can provide insight into the role of qualities (e.g., professional constructs) that are not typically conducive to standard assessment rubrics. Adaptive Comparative Judgement (ACJ) is an assessment approach that is used to assess design projects holistically. The assessment of projects using ACJ can be carried out by experts or students to scaffold their learning experience. This Work-in-Progress paper explores the use and benefits of ACJ for assessing design projects specifically focusing on first-year engineering students and educators. Further, conference attendees will be provided the opportunity throughout the conference to engage with the ACJ software to experience how this system can work in practice for assessing student design projects. 
    more » « less