skip to main content

Search for: All records

Creators/Authors contains: "Soreghan, Michael J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Paleo-loess and silty eolian-marine strata are well recognized across the Carboniferous-Permian of equatorial Pangaea. Eolian-transported dust and loess appear in the late Devonian in the west, are common by the Late Carboniferous, and predominate across equatorial Pangaea by the Permian. The thickest loess deposits in Earth history –>1000 m− date from this time, and archive unusually dusty equatorial conditions, especially compared to the dearth of equatorial dust in the Cenozoic. Loess archives a confluence of silt generation, eolian emission and transport, and ultimate accumulation in dust traps that included ephemerally wet surfaces and epeiric seas. Orogenic belts sourced the silt, and mountain glaciation may have exacerbated voluminous silt production, but remains controversial. In western Pangaea, large rivers transported silt westward, and floodplain deflation supplied silt for loess and dust. Expansion of dust deposition in Late Pennsylvanian time records aridification that progressed across Pangaea, from west to east. Contemporaneous volcanism may have created acidic atmospheric conditions to enhance nutrient reactivity of dusts, affecting Earth’s carbon cycle. The late Paleozoic was Earth’s largest and most long-lived dust bowl, and this dust represents both an archive and agent of climate and climate change. Supplementary material at
    Free, publicly-accessible full text available October 27, 2023