skip to main content

Search for: All records

Creators/Authors contains: "Sorensen, C. M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present measurements of light scattering intensity from aerosolized, micron sized, irregularly shaped, molybdenum disulfide (MoS 2 ) particles in order to study the effects of a refractive index, m = n + i κ, with large real and imaginary parts. Light scattering was measured over a range of angles from 0.32 °to 157 °. Calibration was achieved by scattering with micron sized, spherical silica particles. Light scattering for both particle types was compared to theoretical Mie scattering calculations using size distributions deter- mined by an aerodynamic particle sizer. Effects of the intensity weighted size distribution are discussed. We find that scattering by these irregularly shaped, highly refractive particles is well described by Mie scattering. We also find that when the quantity κkR, where kR = 2 πR/ λis the size parameter, is greater than one, there is no enhancement in the backscattering. Finally, we show that Guinier analysis of light scattering by highly refractive particles yields intensity weighted mean sizes of reasonable accuracy for any shape.
  2. We present measurements of the scattered light intensity by aerosolized hematite aggregate particles. The measurements were made at a wavelength of 532 nm in the scattering angle range from 0.32 °to 157 °. Hematite has high values of the real and imaginary parts of the refractive index m = n + i κ= 3 + i0.5 at the studied wavelength. Scanning electron micrographs (SEM) indicated that the particles were aggregates whereas the optical microscope pictures showed that the aerosol had a bimodal distribution with effective mean diameters of roughly 1 and 10 μm. This is consistent with the light scattering results which displayed two Guinier regimes. The aggregates were composed of smaller grains with an approximate size of 200 nm. Ultra Small-Angle X-ray Scattering (USAXS) indicate that the aggregates were uniform and non-fractal. Mie calculations for a sphere equivalent to the aggregate size were compared to the experimentally observed results. The observed results showed an enhanced backscattering, whereas the Mie calculations did not due to the large imaginary part of the refractive index. Hematite aggregates were simulated by assuming they were composed of spherical monomers inside a spherical volume. Then the light scattering was calculated using the T-matrix method formore »these simulated aggregates. The calculated results show an enhanced backscattering. We present a dimensional analysis to estimate the extent of multiple scattering within the aggregate and find a correlation between the average number of scattering events within the aggregate and the enhancement in the backscattering.« less
  3. We present investigations of the kinetics of the colloidal sol-to-gel transition by combining small angle static light scattering (SASLS) and dynamic light scattering (DLS) techniques. Dilute monomer volume fractions were used to allow for a full investigation of the gelation to obtain all possible kinetic regimes. Our data verify the predictions of a kinetic theory, the ideal gel point (IGP) theory, where three regimes of kinetics are expected. We observe the first regime, the well-known cluster-dilute regime, with a kinetic exponent of z = 1. Followed by a cluster-dense regime with an enhanced kinetics and z ’ 2. Finally, a gelation regime is observed where the aggregate growth slows and ceases to grow at the IGP predicted size, Rg,G. These results quantitatively verify the IGP theory. We conclude that kinetic description provides a complete theory of the gelation process from sol to gel.
  4. Bleed air is brought into aircraft cabins in order to maintain the quality of the air for passenger and crew health and comfort. The bleed air can be contaminated by oil due to oil seal leaks in the compressor which have been reported randomly and generated significant public interest. Previous studies have measured the particulate size distribution in the bleed air entering the cabin, but never distinguished the type and material of the particulate matter (PM). The particulates could be potentially hazardous oil droplets from the oil seal leaks, water droplets due the presence of fog generated by the cooling system, and so on. In this study we propose a novel technique using light scattering technology to distinguish between contaminant types. This technique uses size and complex index of refraction as the measure. Since each material has a distinct index of refraction, by determining the index of refraction, our proposed low-cost detector could distinguish the compound in the aerosol as well as determine the particle size simultaneously.
  5. A comprehensive theory encompassing the kinetics of the sol-to-gel transition is yet to be formulated due to break-down of the mean-field Smoluchowski Equation. Using high temporal-resolution Monte Carlo simulation of irreversible aggregation systems, we show that this transition has three distinct regimes with kinetic exponent z 2 1 ½ ; 2Þ corresponding to aggregation of sol clusters proceeding to the ideal gel point (IGP); z 2 ½2; 5:7Þ for gelation of sol clusters beyond IGP; and z 2 ½2; 3:5Þ for a hitherto unidentified regime involving aggregation of gels when monomer-dense. We further establish universal power-law scaling relationships that connect the kinetics of these three regimes. Improved parameterizations are performed on the characteristic timescale parameters that define each regime.
  6. The aerosol single scattering albedo (SSA) is the dominant intensive particle parameter determining aerosols direct radiative forcing. For homogeneous spherical particles and a complex refractive index in- dependent of wavelength, the SSA is solely dependent on size parameter (ratio of particle circumference and wavelength) and complex refractive index of the particle. Here, we explore this dependency for the small and large particle limits with size parameters much smaller and much larger than one. We show that in the small particle limit of Rayleigh scattering, a novel, generalized size parameter can be introduced that unifies the SSA dependence on particle size parameter independent of complex refractive index. In the large particle limit, SSA decreases with increasing product of imaginary part of the refractive index and size parameter, another generalized parameter, until this product becomes about one, then stays fairly constant until the imaginary part of the refractive index becomes comparable with the real part minus one. Beyond this point, particles start to acquire metallic character and SSA quickly increases with the imaginary part of the refractive index and approaches one.
  7. The concepts of diffraction and scattering are well known and considered fundamental in optics and other wave phenomena. For any type of wave, one way to define diffraction is the spreading of waves, i.e., no change in the average propagation direction, while scattering is the deflection of waves with a clear change of propagation direction. However, the terms “diffraction”and “scattering”are often used interchangeably, and hence, a clear distinction between the two is difficult to find. This review considers electromagnetic waves and retains the simple definition that diffraction is the spreading of waves but demonstrates that all diffraction patterns are the result of scattering. It is shown that for electromagnetic waves, the “diffracted”wave from an object is the Ewald–Oseen extinction wave in the far-field zone. The intensity distribution of this wave yields what is commonly called the diffraction pattern. Moreover, this is the same Ewald–Oseen wave that cancels the incident wave inside the object and thereafter continues to do so immediately behind the object to create a shadow. If the object is much wider than the beam but has a hole, e.g., a screen with an aperture, the Ewald–Oseen extinction wave creates the shadow behind the screen and the incident lightmore »that passes through the aperture creates the diffraction pattern. This point of view also illustrates Babinet’s principle. Thus, it is the Ewald–Oseen extinction theorem that binds together diffraction, scattering, and shadows.« less