Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 1, 2024
-
Free, publicly-accessible full text available August 1, 2024
-
Free, publicly-accessible full text available February 1, 2024
-
Free, publicly-accessible full text available July 1, 2024
-
Free, publicly-accessible full text available July 1, 2024
-
Abstract Three-body nuclear forces play an important role in the structure of nuclei and hypernuclei and are also incorporated in models to describe the dynamics of dense baryonic matter, such as in neutron stars. So far, only indirect measurements anchored to the binding energies of nuclei can be used to constrain the three-nucleon force, and if hyperons are considered, the scarce data on hypernuclei impose only weak constraints on the three-body forces. In this work, we present the first direct measurement of the p–p–p and p–p– $$\Lambda $$ Λ systems in terms of three-particle correlation functions carried out for pp collisions at $$\sqrt{s} = 13$$ s = 13 TeV. Three-particle cumulants are extracted from the correlation functions by applying the Kubo formalism, where the three-particle interaction contribution to these correlations can be isolated after subtracting the known two-body interaction terms. A negative cumulant is found for the p–p–p system, hinting to the presence of a residual three-body effect while for p–p– $$\Lambda $$ Λ the cumulant is consistent with zero. This measurement demonstrates the accessibility of three-baryon correlations at the LHC.more » « lessFree, publicly-accessible full text available July 1, 2024
-
Free, publicly-accessible full text available February 1, 2024
-
Free, publicly-accessible full text available January 1, 2024
-
Abstract The transverse-momentum $$(p_{\textrm{T}})$$ ( p T ) spectra of K $$^{*}(892)^{0}~$$ ∗ ( 892 ) 0 and $$\mathrm {\phi (1020)}~$$ ϕ ( 1020 ) measured with the ALICE detector up to $$p_{\textrm{T}} $$ p T = 16 GeV/ c in the rapidity range $$-1.2< y < 0.3,$$ - 1.2 < y < 0.3 , in p–Pb collisions at the center-of-mass energy per nucleon–nucleon collision $$\sqrt{s_{\textrm{NN}}} = 5.02$$ s NN = 5.02 TeV are presented as a function of charged particle multiplicity and rapidity. The measured $$p_{\textrm{T}} $$ p T distributions show a dependence on both multiplicity and rapidity at low $$p_{\textrm{T}} $$ p T whereas no significant dependence is observed at high $$p_{\textrm{T}} $$ p T . A rapidity dependence is observed in the $$p_{\textrm{T}} $$ p T -integrated yield (d N /d y ), whereas the mean transverse momentum $$\left( \langle p_{\textrm{T}} \rangle \right) $$ ⟨ p T ⟩ shows a flat behavior as a function of rapidity. The rapidity asymmetry ( $$Y_{\textrm{asym}}$$ Y asym ) at low $$p_{\textrm{T}} $$ p T (< 5 GeV/ c ) is more significant for higher multiplicity classes. At high $$p_{\textrm{T}} $$ p T , no significant rapidity asymmetry is observed in any of the multiplicity classes. Both K $$^{*}(892)^{0}~$$ ∗ ( 892 ) 0 and $$\mathrm {\phi (1020)}~$$ ϕ ( 1020 ) show similar $$Y_{\textrm{asym}}$$ Y asym . The nuclear modification factor $$(Q_{\textrm{CP}})$$ ( Q CP ) as a function of $$p_{\textrm{T}} $$ p T shows a Cronin-like enhancement at intermediate $$p_{\textrm{T}} $$ p T , which is more prominent at higher rapidities (Pb-going direction) and in higher multiplicity classes. At high $$p_{\textrm{T}}$$ p T (> 5 GeV/ $$c$$ c ), the $$Q_{\textrm{CP}}$$ Q CP values are greater than unity and no significant rapidity dependence is observed.more » « lessFree, publicly-accessible full text available June 1, 2024