skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sorenson, Jonathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We state a general purpose algorithm for quickly finding primes in evenly divided sub-intervals. Legendre’s conjecture claims that for every positive integern, there exists a prime between$$n^2$$ n 2 and$$(n+1)^2$$ ( n + 1 ) 2 . Oppermann’s conjecture subsumes Legendre’s conjecture by claiming there are primes between$$n^2$$ n 2 and$$n(n+1)$$ n ( n + 1 ) and also between$$n(n+1)$$ n ( n + 1 ) and$$(n+1)^2$$ ( n + 1 ) 2 . Using Cramér’s conjecture as the basis for a heuristic run-time analysis, we show that our algorithm can verify Oppermann’s conjecture, and hence also Legendre’s conjecture, for all$$n\le N$$ n N in time$$O( N \log N \log \log N)$$ O ( N log N log log N ) and space$$N^{O(1/\log \log N)}$$ N O ( 1 / log log N ) . We implemented a parallel version of our algorithm and improved the empirical verification of Oppermann’s conjecture from the previous$$N = 2\cdot 10^{9}$$ N = 2 · 10 9 up to$$N = 7.05\cdot 10^{13} > 2^{46}$$ N = 7.05 · 10 13 > 2 46 , so we were finding 27 digit primes. The computation ran for about half a year on each of two platforms: four Intel Xeon Phi 7210 processors using a total of 256 cores, and a 192-core cluster of Intel Xeon E5-2630 2.3GHz processors. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. null (Ed.)