skip to main content

Search for: All records

Creators/Authors contains: "Sotka, Erik E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Marine annelid taxonomy is experiencing a period of rapid revision, with many previously “cosmopolitan” species being split into species with more limited geographic ranges. This is exemplified by the Diopatra genus, which has recently witnessed dozens of new species descriptions rooted in genetic analyses. In the northwestern Atlantic, the name D. cuprea (Bosc 1802) has been applied to populations from Cape Cod through the Gulf of Mexico, Central America, and Brazil. Here, we sequenced mitochondrial cytochrome oxidase I (COI) in D. cuprea populations from the Gulf of Mexico to Massachusetts. We find evidence for several deep mitochondrial lineages, suggesting that cryptic diversity is present in the D. cuprea complex from this coastline. 
    more » « less
  2. Castric, Vincent (Ed.)
    Abstract Macroalgal (seaweed) genomic resources are generally lacking as compared with other eukaryotic taxa, and this is particularly true in the red algae (Rhodophyta). Understanding red algal genomes is critical to understanding eukaryotic evolution given that red algal genes are spread across eukaryotic lineages from secondary endosymbiosis and red algae diverged early in the Archaeplastids. The Gracilariales is a highly diverse and widely distributed order including species that can serve as ecosystem engineers in intertidal habitats and several notorious introduced species. The genus Gracilaria is cultivated worldwide, in part for its production of agar and other bioactive compounds with downstream pharmaceutical and industrial applications. This genus is also emerging as a model for algal evolutionary ecology. Here, we report new whole-genome assemblies for two species (Gracilaria chilensis and Gracilaria gracilis), a draft genome assembly of Gracilaria caudata, and genome annotation of the previously published Gracilaria vermiculophylla genome. To facilitate accessibility and comparative analysis, we integrated these data in a newly created web-based portal dedicated to red algal genomics ( These genomes will provide a resource for understanding algal biology and, more broadly, eukaryotic evolution. 
    more » « less
  3. Abstract

    Phenology, or seasonal variation in life cycle events, is poorly described for many macroalgal species. We describe the phenology of a non‐native population ofGracilaria vermiculophyllawhose thalli are free‐living or anchored by decorating polychaetes to tube caps. At a site in South Carolina, USA, we sampled 100 thalli approximately every month from January 2014 to January 2015. We assessed the reproductive state and measured thallus size based on wet weight, thallus length, and thallus surface area from herbarium mounts. Because life cycle stage cannot be assigned using morphology, we implemented a PCR assay to determine the life cycle stage—tetrasporophyte, female gametophyte, or male gametophyte—of each thallus. Tetrasporophytes dominated throughout the year, making up 81%–100% of thalli sampled per month. Reproductive tetrasporophytes varied between 0% and 65% of monthly samples and were most common in warm summer months (July through September) when thalli also tended to be larger. The vast majority of the reproductive thalli were worm‐anchored and not fixed to hard substratum via a holdfast. Thus, free‐living thalli can be reproductive and potentially seed new non‐native populations. GivenG. vermiculophyllareproduction seems tied closely to temperature, our work suggests phenology may change with climate‐related changes in seawater temperatures. We also highlight the importance of understanding the natural history of macroalgae to better understand the consequence of range expansions on population dynamics.

    more » « less
  4. null (Ed.)
  5. Abstract Aim

    As within‐species genomic data have been shown useful in interpreting broader biogeographic trends, we analysed the mode of population genomic isolation involved in a well‐studied intertidal genomic cline to better understand the mechanisms maintaining it. These results were interpreted in the context of spatial variation in habitat use and availability as well as likely fitness consequences for hybridization between the two lineages.


    Pacific coast of North America.


    Arthropods (Class Maxillopoda, Order Sessilia, Family Balanidae;Balanus glandula).


    Genotype‐by‐sequencing approaches were used to generate single‐nucleotide polymorphism markers across sites sampled between southern Alaska and Southern California. Inference using standard population genomic methods, including analysis of population structure, inbreeding and linkage disequilibrium, was used to identify the steepest transitions across the largest number of loci examined. These data were put in the context of observed population density and habitat availability.


    We show that the majority of markers analysed show strong clinal transitions in a very narrow portion of the California coast. Patterns of linkage disequilibrium among markers, along with prior evidence of variation in reproductive potential by latitude and by mitochondrial lineage, suggest some reproductive isolation among the northern and southern lineages ofB. glandulathat are concordant with the drop in population density and habitat availability in central California.

    Main Conclusions

    A significant clinal transition in genomic diversity is stronger and more localized than previously recognized and exhibits statistical patterns suggesting that the lineages are reproductively and phenotypically distinct in ways that may be ecologically important. As this species has been used to infer process in coastal biogeography, further study of concordant patterns will be important for advancing our understanding of this region.

    more » « less
  6. Distribution of Earth’s biomes is structured by the match between climate and plant traits, which in turn shape associated communities and ecosystem processes and services. However, that climate–trait match can be disrupted by historical events, with lasting ecosystem impacts. As Earth’s environment changes faster than at any time in human history, critical questions are whether and how organismal traits and ecosystems can adjust to altered conditions. We quantified the relative importance of current environmental forcing versus evolutionary history in shaping the growth form (stature and biomass) and associated community of eelgrass ( Zostera marina ), a widespread foundation plant of marine ecosystems along Northern Hemisphere coastlines, which experienced major shifts in distribution and genetic composition during the Pleistocene. We found that eelgrass stature and biomass retain a legacy of the Pleistocene colonization of the Atlantic from the ancestral Pacific range and of more recent within-basin bottlenecks and genetic differentiation. This evolutionary legacy in turn influences the biomass of associated algae and invertebrates that fuel coastal food webs, with effects comparable to or stronger than effects of current environmental forcing. Such historical lags in phenotypic acclimatization may constrain ecosystem adjustments to rapid anthropogenic climate change, thus altering predictions about the future functioning of ecosystems. 
    more » « less
  7. null (Ed.)
    Benthic animals profoundly influence the cycling and storage of carbon and other elements in marine systems, particularly in coastal sediments. Recent climate change has altered the distribution and abundance of many seafloor taxa and modified the vertical exchange of materials between ocean and sediment layers. Here, we examine how climate change could alter animal-mediated biogeochemical cycling in ocean sediments. The fossil record shows repeated major responses from the benthos during mass extinctions and global carbon perturbations, including reduced diversity, dominance of simple trace fossils, decreased burrow size and bioturbation intensity, and nonrandom extinction of trophic groups. The broad dispersal capacity of many extant benthic species facilitates poleward shifts corresponding to their environmental niche as overlying water warms. Evidence suggests that locally persistent populations will likely respond to environmental shifts through either failure to respond or genetic adaptation rather than via phenotypic plasticity. Regional and global ocean models insufficiently integrate changes in benthic biological activity and their feedbacks on sedimentary biogeochemical processes. The emergence of bioturbation, ventilation, and seafloor-habitat maps and progress in our mechanistic understanding of organism–sediment interactions enable incorporation of potential effects of climate change on benthic macrofaunal mediation of elemental cycles into regional and global ocean biogeochemical models. 
    more » « less
  8. While considerable evidence exists of biogeographic patterns in the intensity of species interactions, the influence of these patterns on variation in community structure is less clear. Studying how the distributions of traits in communities vary along global gradients can inform how variation in interactions and other factors contribute to the process of community assembly. Using a model selection approach on measures of trait dispersion in crustaceans associated with eelgrass ( Zostera marina ) spanning 30° of latitude in two oceans, we found that dispersion strongly increased with increasing predation and decreasing latitude. Ocean and epiphyte load appeared as secondary predictors; Pacific communities were more overdispersed while Atlantic communities were more clustered, and increasing epiphytes were associated with increased clustering. By examining how species interactions and environmental filters influence community structure across biogeographic regions, we demonstrate how both latitudinal variation in species interactions and historical contingency shape these responses. Community trait distributions have implications for ecosystem stability and functioning, and integrating large-scale observations of environmental filters, species interactions and traits can help us predict how communities may respond to environmental change. 
    more » « less