Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Cobalt phthalocyanine (CoPc) is a promising molecular catalyst for aqueous electroreduction of CO2, but its catalytic activity is limited by aggregation at high loadings. Codeposition of CoPc onto electrode surfaces with the coordinating polymer poly(4‐vinylpyridine) (P4VP) mitigates aggregation in addition to providing other catalytic enhancements. Transmission and diffuse reflectance UV–vis measurements demonstrate that a combination of axial coordination and π‐stacking effects from pyridyl moieties in P4VP serve to disperse cobalt phthalocyanine in deposition solutions and help prevent reaggregation in deposited films. Polymers lacking axial coordination, such as Nafion, are significantly less effective at cobalt phthalocyanine dispersion in both the deposition solution and in the deposited films. SEM images corroborate these findings through particle counts and morphological analysis. Electrochemical measurements show that CoPc codeposited with P4VPonto carbon electrode surfaces reduces CO2with higher activity and selectivity compared to the catalyst codeposited with Nafion.more » « lessFree, publicly-accessible full text available February 19, 2026
-
Polymer-encapsulated cobalt phthalocyanine (CoPc) is a model system for studying how polymer-catalyst interactions in the electrocatalytic systems influence performance for the CO2 reduction reaction. In particular, understanding how bulk electrolyte and proton concentration influences polymer protonation, and in turn how the extent of polymer protonation influences catalytic activity and selectivity, is crucial to understanding polymer-catalyst composite materials. We report a study of the dependence of bulk pH and electrolyte concentration on the fractional protonation of poly-4-vinylpyridine and related polymers with both electrochemical and spectroscopic evidence. In addition, we show that the fractional protonation of the polymer is directly related to both the activity of the catalyst and the reaction selectivity for the CO2 reduction reaction over the competitive hydrogen evolution reaction. Of particular note is that the fractional protonation of the film is related to electrolyte concentration, which suggests that the transport of counterions plays an important role in regulating proton transport within the polymer film. These insights suggest that electrolyte concentration and pH play an important in the electrocatalytic performance for polymer-catalyst composite systems, and these influences should be considered in both experimental preparation and analysis.more » « less
An official website of the United States government
