skip to main content


Search for: All records

Creators/Authors contains: "Sousa, Wayne P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    As climate change increases fire frequency in Mediterranean‐type shrublands, it is essential to understand the links between common postfire plant assemblages and soil nitrogen (N) and carbon (C) cycling during succession. In California chaparral, periodic fire removes shrub cover, deposits ammonium (NH4+‐N) on soils, and allows herbaceous assemblages to dominate for 3–5 years. Herbs influence soil biogeochemistry through several mechanisms, including nutrient uptake, litter decomposition, and rhizodeposition. Controlled experimental removal of select plant groups from wild assemblages can demonstrate interactions between plant groups and how plant traits influence belowground processes. In a two‐year herb‐removal experiment, we investigated the impact of N‐fixing and non‐N‐fixing herbs on soil N and C cycling. Treatments were (1) all herbs, (2) only non‐N‐fixing species, (3) only N‐fixing species, and (4) no herbs. In high‐N environments, N‐fixers were predicted to compete poorly against non‐N‐fixing neighbors. N‐fixers doubled in abundance when non‐N‐fixers were removed, but non‐N‐fixers were unaffected by N‐fixer removal. Two years after fire, no‐herbs plots had the lowest soil microbial respiration rates, and total accumulated C and N were lower than all‐herb plots. Two treatments, no‐herb and N‐fixer plots, had elevated mineral N concentrations, net N mineralization, and net nitrification in the second year of the experiment. Our findings underscore the importance of fire‐following herbs for postfire N retention and organic matter accumulation. A combination of both N‐fixing and non‐N‐fixing herbs maximized total soil C and N, although the accumulation of TC and TN in all‐herb plots was not significantly higher than in non‐N‐fixer plots. Results demonstrated the key role of non‐N‐fixing herbs in accumulating soil C and herbaceous communities for retaining N. Elevated soil nutrient availability two years postfire may contribute to the long‐term recovery of shrubs, even after herbs are no longer dominant. Future investigations should also consider the magnitude of soil microbial N retention in plots with different herb functional groups, along with the species‐specific contribution of non‐N‐fixing herbs to postfire C and N cycling.

     
    more » « less
  2. Hawkins, Stephen J. ; Bohn, Katrin ; Firth, Louise B. ; Williams, Gray A. (Ed.)
  3. Abstract

    Negative impacts of discrete, short‐term disturbances to wildlife populations are well‐documented. The consequences of more gradual environmental change are less apparent and harder to study because they play out over longer periods and are often indirect in their action. Yet, they can drive the decline of wildlife populations even in seemingly pristine and currently well‐protected habitats. One such environmental change is a successional shift in a community's species composition as it regenerates from disturbance caused by past human land use. Early and middle successional tree species often provide key foods to folivores and frugivores, but the abundance of these resources drops as the forest matures, with adverse repercussions for these consumers. Our 44‐year record (1974–2018) of howler monkey (Alouatta palliata) group sizes and demographic composition from Barro Colorado Island, Panama, a protected reserve, documents an example of this phenomenon. After 70 years of relative stability, the mean size of howler monkey groups exhibited a marked decline, beginning in 2003. This downward trajectory in group size has continued through the most recent census in 2018. The composition of howler groups also changed significantly during the study period, with the patterns of decline differing among age/sex classes. There is no evidence that these changes were caused by increased rates of emigration, group fission, predation, parasitism, or disease. Rather, they are best explained by an island‐wide, succession‐driven decline in the densities of two species of free‐standing fig trees,Ficus yoponensisandF. insipida, which together were providing ~36% ofBCIhowlers’ annual diet.

    Abstract in Spanish is available with online material.

     
    more » « less