skip to main content


Search for: All records

Creators/Authors contains: "Southall, D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. When Earth-skimming tau neutrinos interact within the Earth, they generate upgoing tau leptons that can decay in the atmosphere, forming extensive air showers. The Beamforming Elevated Array for COsmic Neutrinos (BEACON) is a novel detector concept that utilizes a radio interferometer atop a mountain to search for the radio emission due to these extensive air showers. The prototype, located at the White Mountain Research Station in California, consists of 4 crossed-dipole antennas operating in the 30-80 MHz range and uses a directional interferometric trigger for reduced thresholds and background rejection. The prototype will first be used to detect down-going cosmic rays to validate the detector model. A Monte-Carlo simulation was developed to predict the acceptance of the prototype to cosmic rays, as well as the expected rate of detection. In this simulation, cosmic ray induced air showers with random properties are generated in an area around the prototype array. It is then determined if a given shower triggers the array using radio emission simulations from ZHAireS and antenna modelling from XFdtd. Here, we present the methodology and results of this simulation. 
    more » « less
  2. Abstract Over the last 25 years, radiowave detection of neutrino-generated signals, using cold polar ice as the neutrino target, has emerged as perhaps the most promising technique for detection of extragalactic ultra-high energy neutrinos (corresponding to neutrino energies in excess of 0.01 Joules, or 10 17 electron volts). During the summer of 2021 and in tandem with the initial deployment of the Radio Neutrino Observatory in Greenland (RNO-G), we conducted radioglaciological measurements at Summit Station, Greenland to refine our understanding of the ice target. We report the result of one such measurement, the radio-frequency electric field attenuation length $L_\alpha$ . We find an approximately linear dependence of $L_\alpha$ on frequency with the best fit of the average field attenuation for the upper 1500 m of ice: $\langle L_\alpha \rangle = ( ( 1154 \pm 121) - ( 0.81 \pm 0.14) \, ( \nu /{\rm MHz}) ) \,{\rm m}$ for frequencies ν ∈ [145 − 350] MHz. 
    more » « less
  3. null (Ed.)
  4. Abstract

    Since summer 2021, the Radio Neutrino Observatory in Greenland (RNO-G) is searching for astrophysical neutrinos at energies$${>10}$$>10 PeV by detecting the radio emission from particle showers in the ice around Summit Station, Greenland. We present an extensive simulation study that shows how RNO-G will be able to measure the energy of such particle cascades, which will in turn be used to estimate the energy of the incoming neutrino that caused them. The location of the neutrino interaction is determined using the differences in arrival times between channels and the electric field of the radio signal is reconstructed using a novel approach based on Information Field Theory. Based on these properties, the shower energy can be estimated. We show that this method can achieve an uncertainty of 13% on the logarithm of the shower energy after modest quality cuts and estimate how this can constrain the energy of the neutrino. The method presented in this paper is applicable to all similar radio neutrino detectors, such as the proposed radio array of IceCube-Gen2.

     
    more » « less
  5. null (Ed.)
  6. null (Ed.)