- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Baker, Glenn Eli (1)
-
Mueen, Abdullah (1)
-
Souza, Vinicius MA (1)
-
Zhong, Sheng (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Seismic monitoring systems sift through seismograms in real-time, searching for target events, such as underground explosions. In this monitoring system, a burst of aftershocks (minor earthquakes occur after a major earthquake over days or even years) can be a source of confounding signals. Such a burst of aftershock signals can overload the human analysts of the monitoring system. To alleviate this burden at the onset of a sequence of events (e.g., aftershocks), a human analyst can label the first few of these events and start an online classifier to filter out subsequent aftershock events. We propose an online few-shot classification model FewSig for time series data for the above use case. The framework of FewSig consists of a selective model to identify the high-confidence positive events which are used for updating the models and a general classifier to label the remaining events. Our specific technique uses a %two-level decision tree selective model based on sliding DTW distance and a general classifier model based on distance metric learning with Neighborhood Component Analysis (NCA). The algorithm demonstrates surprising robustness when tested on univariate datasets from the UEA/UCR archive. Furthermore, we show two real-world earthquake events where the FewSig reduces the human effort in monitoring applications by filtering out the aftershock events.more » « less
An official website of the United States government
